Temperature 1 Self-Assembly: Deterministic Assembly in 3D and Probabilistic Assembly in 2D

From self-assembly wiki
Jump to navigation Jump to search

Published on: 2010/05/13

Abstract

We investigate the power of the Wang tile self-assembly model at temperature 1, a threshold value that permits attachment between any two tiles that share even a single bond. When restricted to deterministic assembly in the plane, no temperature 1 assembly system has been shown to build a shape with a tile complexity smaller than the diameter of the shape. In contrast, we show that temperature 1 self-assembly in 3 dimensions, even when growth is restricted to at most 1 step into the third dimension, is capable of simulating a large class of temperature 2 systems, in turn permitting the simulation of arbitrary Turing machines and the assembly of \(n \times n\) squares in near optimal \(O(\log n)\) tile complexity. Further, we consider temperature 1 probabilistic assembly in 2D, and show that with a logarithmic scale up of tile complexity and shape scale, the same general class of temperature \(\tau=2\) systems can be simulated with high probability, yielding Turing machine simulation and \(O(\log^2 n)\) assembly of \(n\times n\) squares with high probability. Our results show a sharp contrast in achievable tile complexity at temperature 1 if either growth into the third dimension or a small probability of error are permitted. Motivated by applications in nanotechnology and molecular computing, and the plausibility of implementing 3 dimensional self-assembly systems, our techniques may provide the needed power of temperature 2 systems, while at the same time avoiding the experimental challenges faced by those systems.

Authors

Matthew Cook, Yunhui Fu, Robert Schweller

File

Temperature 1 Self-Assembly: Deterministic Assembly in 3D and Probabilistic Assembly in 2D.pdf