An Introduction to Tile-Based Self-Assembly and a Survey of Recent Results

From self-assembly wiki
Jump to navigation Jump to search

Published on: 2014/03/01

Abstract

We first give an introduction to the field of tile-based self-assembly, focusing primarily on theoretical models and their algorithmic nature. We start with a description of Winfree’s abstract Tile Assembly Model (aTAM) and survey a series of results in that model, discussing topics such as the shapes which can be built and the computations which can be performed, among many others. Next, we introduce the more experimentally realistic kinetic Tile Assembly Model (kTAM) and provide an overview of kTAM results, focusing especially on the kTAM’s ability to model errors and several results targeted at preventing and correcting errors. We then describe the 2-Handed Assembly Model (2HAM), which allows entire assemblies to combine with each other in pairs (as opposed to the restriction of single-tile addition in the aTAM and kTAM) and doesn’t require a specified seed. We give overviews of a series of 2HAM results, which tend to make use of geometric techniques not applicable in the aTAM. Finally, we discuss and define a wide array of more recently developed models and discuss their various tradeoffs in comparison to the previous models and to each other.

Authors

Matthew J. Patitz

File

An Introduction to Tile-Based Self-Assembly and a Survey of Recent Results.pdf