Weak Self-Assembly

From self-assembly wiki
Revision as of 21:00, 21 May 2013 by \('"2\)'"7
(\(1) \)2 | \(3 (\)4) | \(5 (\)6)
Jump to navigation Jump to search

Essentially, weak self-assembly can be thought of as the creation (or "painting") of a pattern of tiles that are a subset of the tile set(usually taken to be a unique "color") on a possibly larger ``canvas of un-colored tiles.

Definition

A set \(X \in \mathbb{Z}^2\) \({\it weakly self-assembles}\) if there exists a TAS \({\mathcal T} = (T, \sigma, \tau)\) and a set \(B \subseteq T\) such that \(\alpha^{-1}(B) = X\) holds for every terminal assembly \(\alpha \in \termasm{T}\).