Self-Assembly of Discrete Self-Similar Fractals

From self-assembly wiki
Revision as of 15:38, 1 March 2012 by \('"2\)'"7
(\(1) \)2 | \(3 (\)4) | \(5 (\)6)
Jump to navigation Jump to search

Published on: 2008/03/12

Abstract

In this paper, we search for theoretical limitations of the Tile Assembly Model (TAM), along with techniques to work around such limitations. Specifically, we investigate the self-assembly of fractal shapes in the TAM. We prove that no self-similar fractal weakly self-assembles at temperature 1 in a locally deterministic tile assembly system, and that certain kinds of discrete self-similar fractals do not strictly self-assemble at any temperature. Additionally, we extend the fiber construction of Lathrop, Lutz and Summers (2007) to show that any discrete self-similar fractal belonging to a particular class of "nice" discrete self-similar fractals has a fibered version that strictly self-assembles in the TAM.

Authors

Matthew J. Patitz and Scott M. Summers

File

media:SADSSF journal.pdf