Difference between revisions of "Self-Assembly of Discrete Self-Similar Fractals"
Line 9: | Line 9: | ||
discrete self-similar fractals has a fibered version that strictly self-assembles in the TAM. | discrete self-similar fractals has a fibered version that strictly self-assembles in the TAM. | ||
|authors=Matthew J. Patitz and Scott M. Summers | |authors=Matthew J. Patitz and Scott M. Summers | ||
− | |file=[[media: | + | |file=[[media:SADSSF journal.pdf]] |
}} | }} |
Revision as of 13:35, 4 December 2011
Published on:
Abstract
In this paper, we search for theoretical limitations of the Tile Assembly Model (TAM), along with techniques to work around such limitations. Specifically, we investigate the self-assembly of fractal shapes in the TAM. We prove that no self-similar fractal weakly self-assembles at temperature 1 in a locally deterministic tile assembly system, and that certain kinds of discrete self-similar fractals do not strictly self-assemble at any temperature. Additionally, we extend the fiber construction of Lathrop, Lutz and Summers (2007) to show that any discrete self-similar fractal belonging to a particular class of "nice" discrete self-similar fractals has a fibered version that strictly self-assembles in the TAM.
Authors
Matthew J. Patitz and Scott M. Summers