Difference between revisions of "Self-Assembly of Discrete Self-Similar Fractals"

From self-assembly wiki
Jump to navigation Jump to search
(Created page with "{{PaperTemplate |title=Self-Assembly of Discrete Self-Similar Fractals |abstract=In this paper, we search for theoretical limitations of the Tile Assembly Model (TAM), along with...")
 
Line 9: Line 9:
 
discrete self-similar fractals has a fibered version that strictly self-assembles in the TAM.
 
discrete self-similar fractals has a fibered version that strictly self-assembles in the TAM.
 
|authors=Matthew J. Patitz and Scott M. Summers
 
|authors=Matthew J. Patitz and Scott M. Summers
|file=SADSSF journal.pdf
+
|file=[[media:SADSSF_journal.pdf]]
 
}}
 
}}

Revision as of 13:33, 4 December 2011

Published on:

Abstract

In this paper, we search for theoretical limitations of the Tile Assembly Model (TAM), along with techniques to work around such limitations. Specifically, we investigate the self-assembly of fractal shapes in the TAM. We prove that no self-similar fractal weakly self-assembles at temperature 1 in a locally deterministic tile assembly system, and that certain kinds of discrete self-similar fractals do not strictly self-assemble at any temperature. Additionally, we extend the fiber construction of Lathrop, Lutz and Summers (2007) to show that any discrete self-similar fractal belonging to a particular class of "nice" discrete self-similar fractals has a fibered version that strictly self-assembles in the TAM.

Authors

Matthew J. Patitz and Scott M. Summers

File

media:SADSSF_journal.pdf