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Abstract—We consider the problem of fault-tolerance
in nanoscale algorithmic self-assembly. We employ a stan-
dard variant of Winfree's abstract Tile Assembly Model
(@aTAM), the two-handed aTAM, in which square “tiles”

— a model of molecules constructed from DNA for the
purpose of engineering self-assembled nanostructures —
aggregate according to specific binding sites of varying
strengths, and in which large aggregations of tiles may
attach to each other, in contrast to theseeded aTAM, in
which tiles aggregate one at a time to a single specially-
designated “seed” assembly. We focus on a major cause
of errors in tile-based self-assembly: that of unintended
growth due to “weak” strength-1 bonds, which if allowed
to persist, may be stabilized by subsequent attachment of
neighboring tiles in the sense that at least energy 2 is now
required to break apart the resulting assembly; i.e., the
errant assembly isstable at temperature 2.

We study a common self-assembly benchmark problem,
that of assembling ann x n square usingO(log n) unique
tile types, under the two-handed model of self-assembly.
Our main result achieves a much stronger notion of
fault-tolerance than those achieved previouslyArbitrary
strength-1 growth is allowed; however, any assembly that
grows sufficiently to become stable at temperature 2 is
guaranteed to assemble into the correct final assembly of
an n x n square. In other words, errors due to insufficient
attachment, which is the cause of errors studied in earlier
papers on fault-tolerance, are preventedabsolutely in our
main construction, rather than only with high probability
and for sufficiently small structures, as in previous fault-
tolerance studies.
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binding rules of the tile bonds. Beginning with the
experimental work of Seeman in the early 1980s [1],
such molecules have been engineered from DNA in the
laboratory, and used to create a variety of sophisticated
self-assembled structures [2], [3] such as Sierpinski
triangles and binary counters. Erik Winfree [4], [5],
based on experimental work of Seeman [1], modified
Wang’'s mathematical model of tiling [6] to add a
physically plausible mechanism for growth through
time. Winfree defined two models of tile-based self-
assembly, the abstract Tile Assembly Model (aTAM)
and the kinetic Tile Assembly Model (KTAM). In both
models, the fundamental components are un-rotatable,
but translatable square “tile types” whose sides are la-
beled with glue “colors” and “strengths.” Two tiles that
are placed next to each othieteractif the glue colors

on their abutting sides match, and in the aTAM, a tile
bindsto an assembly if it interacts on all sides with total
strength at least a certain ambient “temperature,” usually
taken to be 2. In particular, if a tile has two strength-1
glues, both of them must match the corresponding glues
in the assembly in order to remain bound.

In the more kinetically plausible kKTAM, tiles may
bind even if they interact with strength less than 2,
but are assumed to detach at a rate inversely and
exponentially proportional to the strength with which
they interact. Hence tiles attached with strength 1 detach
“quickly”, and tiles attached with strength 2 detach
“slowly”. A tile attached with only strength 1 (a so-

Tile-based self-assembly is a model of “algorith- called “insufficient attachment”) represents a potential

mic crystal growth” in which square “tiles” represent error, as its other strength-1 glue may be mismatched
molecules that bind to each other via specific andwith the abutting portion of the assembly, or mis-

variable-strength bonds on their four sides, driven bymatched with what is eventually intended to be placed
random mixing in solution but constrained by the local at that position. However, since strength-1 attachments



are assumed to detach after a short time, an insufficienmhodel in the sense of accounting for unseeded nucle-
attachment actualizes into a permanent error only ifation, it allows us to use the geometry of partially-
another tile first binds to secure the faulty tile in place,formed assemblies, rather than relying solely on (error-
causing the entire assembly to become stable at tenprone) glue specificity, to enforce binding rules between
perature 2. That is, by “wandering” temporarily through subassemblies. This phenomenon, geometric blocking
the space of assemblies producible at temperature 1, wihat prevents bond formation, is well-studied in chem-
may arrive at an assembly not producible at temperaturestry and is known asteric hindrancg15, Section 5.11]

2, yet that, once formed, is stable at temperature 2. Ther, particularly when employed as a design tool for
development of physical and algorithmic mechanismsntentional prevention of unwanted binding in synthe-
for preventing such errors remains a formidable chal-sized moleculessteric protection[16]-[18]. Using the
lenge in nanoscale self-assembly. mechanism of steric protection, we are able to achieve

Stated informally, the KTAM refines the aTAM by 2 much stronger notion of fault-tlolerance than that de-
endowing it with a mechanism for error (temporary scribed in previous error—correct{on papers. Informally,
binding of tiles with strength 1) as well as a mechanism@Ur model of fault-tolerance, which we term thezzy
for error correction (eventual detachment of tiles, everfémperaturenodel, is as follows (a formal description is
those bound with strength 2). Indeed, numerous paper@Ven in Section 1V). Similarly to the kTAM, we allow
have used these two mechanisms for high-probabilinﬁtrength'l insufficient attachments to occur. However,
error correction in the kTAM [5], [7]-[11]. In each of We do not model forward or reverse rates of growth as

these papers except [5], the same basic principle is usefl the KTAM, as.there. i_s no need to employ t_he hi_gher
to achieve error correction, known @soofreading If reverse rates of insufficient attachments: any !nsufﬁment
an insufficient attachment results in mismatching gluesattachments that lead to an assembly that is stable at
this error is “amplified” by forcing further growth to (emperature avere never errors in the first placas
require many other insufficient attachments to stabilizeSUch an assembly can always lead to an assembly that
Since these happen only slowly, the assembly procesd@s producible with only strength-2 growth. That is,
is slowed down, giving time for the tiles that sta- Viewed as a modification of the aTAM, we allow the
bilized the original insufficient attachment to detach, lémperature to be *fuzzy”, occasionally drifting from
thus correcting the original error. In [5], Winfree also 2 down to 1, which allows strength-1 growth for as
shows how errors are removed through the detaching dPng as the temperature remains low. However, once
tiles, although there is no “error-amplification process”; the temperature is raised back to 2, thus dissolving
Winfree shows that by setting the ratio of the forward @ny structure that is stable only at temperature 1, the
rate to the reverse rate sufficiently small (thus S|0V\,mgstable assemblies that are left over are all assemblies

down the entire assembly process), erroneous tiles wilfhat are already producible at temperature 2 or that
detach with high probability. can grow into a temperature-2-producible assembly.

Therefore, while insufficient attachments can occur,

, errors due to insufficient attachments cannot occur,
two-handedaTAM (see, for example, [12]). Winfree's _. e .
since temperature-2 stabilization of such errors, which

original model_, thseededaTAM [4], [5],.st|pulat?s thaf . our construction prevents, is required for the errors to
assembly begins from a specially-designated “seed 'ulePecome permanent

type, and all binding events consist of the attachmen

of a single tile to the growing assembly that contains \we focus on the problem of assembling an< n

the seed. The seed thus serves asueleation point  square, a common benchmark problem for demon-

from which all further growth occurs. In reality, such strating the use of self-assembly techniques (see, for

sing_le—poipt nucleat_ion is difficult to enforce [13], [14] example, [19]). In particular, our main result is the

as tiles with matching glues may attach to each othegonstryction of a tile set with)(log n) unique tile types

in solutlon_, even if neither of them is connect_ed t0 (which is close to théX(log n/ loglog n) optimal lower

the seed tile. The two-handed aTAM models this sorthoynd [19]) that uniquely assembles intorarn square

of growth by dispensing with the idea of a seed, andiy the two-handed aTAM at temperature 2, and that has

simply defining an assembly to be producible if 1) it the fuzzy-temperature fault-tolerance property desdribe

consists of a single ti_Ie (base case), or 2_) it results frf_’”hbove. In keeping with the “wandering” analogy from

the stable aggregation of two producible assemblieshe peginning of this section, our construction allows

(recursive case). arbitrary wandering in the space of assemblies pro-
Not only is the two-handed aTAM a more realistic ducible at temperature 1, but funnels all such wandering

We work in a variant of the aTAM known as the



towards a single unique terminal assembly, or towards | + m=m , e i == & 5
the oblivion of destruction at temperaturé 2. B T I === e 1O I
This paper is organized as follows. Section Il gives = [ T = | T + 2
an informal description of the two-handed aTAM. Sec- . . .
tion 1l shows a construction of a non-fault-tolerant | :'Ir—r | L"I iur—r | : m
counter, to introduce some of the main ideas of the full 1 ;‘:_ B e e e
construction. Section IV defines the fuzzy temperature i ¢ i H
model of fault-tolerance. Section V describes a high- ¢ . i .
level overview of the main construction and explains R L e N
the basic techniques employed. Section VI concludes ' [ ' ‘HEERE CEEEY 0 LEEH
the paper and states open questions. ¢ “ N g
Il. INFORMAL DESCRIPTION OF THETWO-HANDED [T e linad =S
ABSTRACT TILE ASSEMBLY MODEL ! ;‘:_ 0 { ;1 3}* r==3

This section gives a brief informal sketch of the two-
handed temperature-2 abstract Tile Assembly ModeFigure 1:Tile set for two-handed assembly of a lengthbinary
(aTAM). counter usingO(logn) tile types.

A tile type is a unit square with four sides, each terminal supertile places tiles exactly on those positions
having aglue consisting of alabel (a finite string) in X (appropriately translated if necessary).
and strength (0, 1, or 2). We assume a finite s&ét
of tile types, but an infinite number of copies of each
tile type, each copy referred to astite. A supertile

1. Two-HANDED ASSEMBLY OF ACOUNTER
FROM O(logn) TILE TYPES

(a.k.a.,assemblyis a positioning of tiles on the integer
lattice Z2. Two adjacent tiles in a supertilateractif the

In this section we describe the two-handed assembly
of a (non-fault-tolerant) counter fron®(logn) tile

glues on their abutting sides are equal and have positiveypes, as a warmup to our full fault-tolerant square

strength. Each supertile inducesiading graph a grid

construction. While this technique does not achieve

graph whose vertices are tiles, with an edge between twéault-tolerance, it introduces a novel new counter design

tiles if they interact. The supertile is-stableif every
cut of its binding graph has strength at leastwhere

technique that utilizes 1) geometry to enforce/restrict
specific assemblies and 2) non-determinism of super-

the weight of an edge is the strength of the glue it repretile formation and attachment to explore the space of

sents. That is, the supertile is stable if at least energy
is required to separate the supertile into two partsleA
assembly systefTAS) is a pair7 = (T, 1), whereT
is a finite tile set and is thetemperatureusually 1 or
2. Given a TAST = (T, 1), a supertile iproducibleif
either it is a single tile fronT", or it is ther-stable result
of translating two producible assemblies. A superdile
is terminalif for every producible supertil@, o and 3
cannot ber-stably attached. A TAS idirected(a.k.a.,
deterministi¢c confluen} if it has only one terminal,
producible supertile. Given a connected shap& 72,
a TAS 7 produces X uniquelyif every producible,

1We emphasize that this isot the same as saying that our con-
struction assembles anx n square at temperature 1: at temperature
1, many different terminal assemblies can nondetermaaittyi form,
most of which are junk. Our construction ensures that when th
temperature is raised to 2, all the junk dissolves away,irfgaenly
assemblies that are required to assemble the square, aod edhild
have grown anyway had the temperature remained at 2. In ifact,
is an open problem, first stated by Winfree and Rothemund 9, [1
to uniquely assemble an x n square at temperature 1 using fewer
than2n — 1 tile types (compared to our use 6f(log n) tile types).
Rothemund and Winfree conjectured that — 1 is a strict lower
bound for this problem.

possible intermediate assemblies, despite the existence
of only one unique terminal assembly. This technique
forms the basis for the more involved fuzzy fault
tolerant construction.

The tile set for the counter is depicted in Figure 1.
In this figure, an example tile set for a 4 bit counter
that counts from 0 to 15 is provided. Tile types that
share unique, full strength = 2 glues are connected
by a black line that crosses over the bonded edge. Other
glues in the system include strength= 2 gluesA; and
C; for i from 0 tolog n for a lengthn counter, and two
strengtht = 1 glues denoted by the green and blue
squares.

Conceptually, the tile set of Figure 1 consists of a
number of blocks for each bit position of a binary
counter. These blocks assemble into heighiogn)
columns, where the representative block for each bit is
determined non-deterministically. Further, the geometry
of each block encodes a bit on both the left and right
side of the block by alentthat appears at either the
upper or lower half of the block. In the case of orange
rollover blocks, the left side encodes the value 1, while



the right encodes the value 0; these represent 1 bits less
significant than the least significant 0, which all change of
from 1 to 0 on the next increment. For the yelltsast
significant Oblocks, the left dent encodes the value 0 0
and the right encodes 1. For the greypy blocks, the
left and right encode the same value, with one type of |
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bits more significant than the least significant 0, which 1
remain the same on the next increment.
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Figure 3:The basic temperature = 2 counter in this section is not
fuzzy fault tolerant. The above supertile is producibleesthperature
T = 1, stable at temperature = 2, and cannot grow into the desired
unique temperature = 2 final assembly of Figure 2.

IV. Fuzzy TEMPERATUREFAULT-TOLERANCE

) In this section we introduce the fuzzy temperature
Figure 2:Fully assembled counter from the tiles in Figure 1. model of fault-tolerance in self-assembly. The fuzzy
The glue types that connect blocks from one row totemperature assembly model permits rampant temper-

another ensure that any assembled column consists eture = = 1 growth of supertiles under the two-
red blocks from rows 1 to (r at least 1 and at most handed assembly model. We are then interested in what
log n), followed by a yellow block in rowr + 1 (if producible temperature = 1 assemblies become stable

r < logn), followed by grey blocks (either type) in rows at temperature = 2. If even a single temperature= 1

r+ 2 to rowlogn (if » + 1 < logn). This pattern has assembly becomes stable at temperature 2 and is

the property that for anylogn)-bit string b, a column  inconsistent with what can be built in a purely tem-
may assemble that encodes that string in the geometmgeraturer = 2 assembly model, the system is deemed
of the dents on the left side of the column, and the righterror prone On the other hand, if all temperature= 1

side of the column in turn encodés- 1. Additionally,a  assemblies that are stable at temperatuee 2 have a
fully assembled column can also attach the two four-tilevalid temperature = 2 path of growth to a supertile
chains of Figure 1 to both the top glue and bottom that is producible under a pure temperature= 2

C glue of the column. For any two assembled columnsmodel, then the system is deem@drzy temperature
the strengthr = 1 green and blue glues combined give fault-tolerant Put another way, even with arbitrary

a strengthr = 2 affinity for any two assembled columns erroneous strength 1 attachments, a fuzzy temperature
to attach. However, due to the rigid teeth-like geometryfault-tolerant system guarantees that such errors cannot
of the columns, only sequential columns can get closestabilize at temperature 2 unless the stabilized supertile

enough to realize the affinity and assemble under thean itself grow into acorrect temperaturer = 2
two-handed assembly model. The unique assembly ofssembly, which means such an assembly is not really
the tile set of Figure 1 is shown in Figure 2. an error.

In the example provided, we are specifically consid- Formally, for a given initial tile sef’, we define fuzzy
ering the special case of a counter that grows to a powealemperature fault-tolerance in terms of the following
of 2 length. More generally, it is possible to assemblefour sets of supertiles: (1) Thdependably produced
only columns that encode values greater or equal to éDP) supertiles are those that can be assembled at tem-
given initial value, thereby allowing the assembly of peraturer = 2 under the two-handed assembly model.
a lengthn counter for generah. However, we leave Formally, DP is the set of all producible supertiles
these details for the extended fault tolerant version ofor the two-handed assembly systefi,2); (2) The
the construction. dependably termingIDT) supertiles are all supertiles in

The counter in this section is not fuzzy fault tolerant. DP that cannot grow any further at temperature: 2.

In particular, the supertile in Figure 3 is producible at Formally, DT is the set of terminal, producible supertiles
temperaturer = 1 (but notT = 2 because the two- for the two-handed assembly systefi,2); (3) The
handed model requires that at mastupertiles, both of plausibly producedPP) supertiles are those that can
which are stable at = 2, combine in any step), stable be assembled at temperature= 1. Formally, PP is
at temperature = 2, but cannot grow into the correct the set of all producible supertiles for the two-handed
uniqguer = 2 assembled counter of Figure 2. assembly systeniT, 1); and (4) Theplausibly stable



(PS) supertiles are all supertiles in PP that are stable at T T LT LT

temperaturer = 2. Hirh il tarish i ek B ik
Intuitively, DT denotes a final collection of supertiles ik Pty O vy I pyiiely

that can be expected to be built given enough time for [ enicomesbonc | [T

assembly in a temperatugesystem. On the other hand, (S I S I i I

due to the occasional assembly of supertiles with only v e e s

strength 1 attachments, elements in PP will (plausibly) 7 | A e [

be assembled. Elements of PP that are not stable at

temperaturer = 2 intuitively will eventually break L

apart and are not of concern. However, these assemblies I E Eg ngigiﬁ Eg EE

may grow to a point in which they become stable at
temperaturer = 2, m_ which C_ase they will not break Figure 4: A simplified diagram of the components of a fullx n
apart. Such assemblies constitute the set PS. The goal dguare. Components are not represented to scale.

to design a system such that for each elemenf PS,

every terminal3 into which a can grow at temperature A. Square

7 = 2 is an element of DT (written®S = DT), and As is common in many self-assembly constructions
that DT is the set of desired shapes to be assembledor square-building, most of the work is in constructing
Put another way, we want to avoid the design of ancounters that calculate the dimensions of the square.
error prone system in which stable assemblies that arfigure 4 shows a high-level diagram of how to compose
inconsistent with the desired final assembly are built bythese counters. The horizontal counter and the vertical

erroneous = 1 strength attachments. counters are constructed in conceptually the same way,
More precisely, the fuzzy temperature fault-tolerancewith minor differences in the actual implementation.
design problem is as follows: Most of the effort of our main construction is in

fuzzy temperature fault-tolerance design prob- encoding the number into the tiles that grow a counter,
lem:: Given a target shap®, the goal is to design SO that it can control the length to which the counter
a tile set such that: (LPS = DT (fuzzy temperature 9rOWS, in a fault-tolerant way.
fault-tolerance con§traint); and (2).aII supertiles in DTB. counter
have shapé&’. (Desired goal shape is the unique output

of the assembly.) For simplicity we describe only the horizontal

g . counter. The vertical counters are constructed similarly,
For the remainder of this paper, we attempt to SOV, the exception that they are slightly simpler because
the fuzzy temperature fault-tolerance problem for theyt the need for the horizontal counter to correctly space

benchm_ark example Of an x n square. As a me_t”f:’ out its bonds designed to connect the horizontal counter
we are interested in minimizing the number of distinct, 1 various vertical counters.

tile types required to assemble a square while adhering pqfine 1 = llogn| + 2 to be 1 plus the number
to the fuzzy temperature fault-tolerance constraint; the¢ pits in 7. As in Section Ill. the counter consists of
problem is trivialized if one allows:? different tile n columns (actuallyn divid’ed by the width in tiles
types to hard-code each position in the square (or evegs 5 co1umn, which is a constant, but for simplicity of
usingO(n) tile types to use the non-cooperative “comb” yiscssion we will assume that there arecolumns),
structure from [19]). We show that a sle€k(logn)  gach representing an integer betweén- n and2* — 1.

tile complexity is achievable, which is very close t0 the N6 that we refer to columns as “counter-values.” Each

1 H H .
0 (10;1%)2”) bound that can be achieved with no fault- counter-value is connected to the next by two strength-
tolerance constraint (in the seeded, single-tile addition inter-counter-value glugsand correct inter-counter-

model). value binding is enforced using bumps and dents as in
Section IlI.
V. OVERVIEW OF FAULT-TOLERANT SQUARE C. Counter-Value
CONSTRUCTION As in Section lll, counter-values form randomly from

~ logn “bit gadgets”, each of constant size, with each
This section gives a high-level description of the mainbit selected at random. Figure 6 shows the bit gadgets,
construction of this paper, a square that assembles undand Figure 7 shows some of them attaching to form
the fuzzy temperature fault tolerance model. a few counter-values of a counter. Beyond the need



for fuzzy temperature fault-tolerance, these bit gadgetsve can therefore logically view each bit gadget as a
must meet additional requirements. We first describesingle tile, with double-strength glues on the north and
how to meet these requirements, and then describe hosouth. The values of these glues will then be carried
to achieve fault-tolerance. through to every actual tile that makes up a bit gadget,

1) Glue Design for Additional Requirements of and combined with the glues that hard-code the relative

Counter-Values:The logical requirements that counter- position of each tile in the bit gadget, allow us to

values must meet are: conceptually separate the problem of fault tolerance

(a) The right side of a counter-value must represerit ~ from that of meeting the three requirements discussed
if the left side representis This was already needed above. Finally, we can conceptually separate these three
in Section . problems from each other, designing tiles to meet those

(b) Each counter-value must be guaranteed to form aiequirements separately, and combine them in a cross-
integer in the rangQQk —n, 2k — 1], so that the product construction. Figure 5 shows the three tile sets
counter has exactly counter-values. that meet the requirements (a), (b), and (c).

(c) Only a subset of appropriately spaced counter- |n each case, we take care to ensure that the re-
values should have glues on the north to allowquirement is met no matter in which order the tiles
the vertical counters to bind, since the horizontalaggregate. Nonetheless, it is easiest to describe their
width of each vertical counters 8(logn), whereas  operation as though the northmost tile is first present,
the horizontal width of each counter-value in the and the counter-value assembles north-to-south; i.e.,
horizontal counter i§)(1). This is done by choosing most significant bit to least significant.

a power of two2™ (for m just large enough that  Fjgyre 54 shows the tiles that implement incrementing
2™ > width of a vertlcalw(l:ounter), and placing the ¢, ensyre that the east bits represent if the west bits
glues to the north every™ counter-values. represent. If the position of the least significant 0 in
B is p, then all bits at positions aboyeare equal, all bits
at positions below are 1 fori and 0 fori + 1, and at
positionp the bit is 0 fori and 1 fori+ 1. Therefore the

tiles nondeterministically guess a positiprat which to

bl S

make this transition, and enforce that all tiles abgve

bid have equal bits and all tiles at or belgvobey the stated
4 4 0 i 1[1id1

] T requirement.
i iAo i ) . .
o X1 : Figure 5b shows the tiles that implement range-
Y o checking to ensure that the numbehat is constructed
\ \ A . . _ ok _ . . .
is greater tharm =2"—n. (Since p_rec;|selyc bits are
v —— assembled; < 2*.) Imagine comparing to m starting

at the most significant bit. We must enforce that there
(a) Increment a (b) Enforces that  (c) Detects if the binary number  is at least one bit difference, and that in the position of
binary number the left number is formed 1) is equal to a given P . . .

greater than the number, or 2) matches a gven ~ MOSt Significance where there is a difference that the bit

right number of the low-order bits of  from 7 is 1 and the bit fromm is 0. As before, the tiles
Figure 5: Templates for tthi:]”‘t‘mbe’f eets of e NONeterministically guess at which position the first

. lemplates 1or tle sets at perform supsets 0 e . . . .

functionality of the hairpin gadgets (described in moreaiein dlsag_reem_em will occur. Below thej f_|rs_t disagreement,
Section V-C2). Though not shown, each tile has streagtiwes on  the bits ofi are selected nondeterministically. We chose
the north and south, implemented in the actual tile set asiraopa  the value ofk so that we known's most significant bit
single-strength bonds for fault-tolerance purposes. Bw ahd west . .t el
“bit values” in Figure 5a are represented in the actual ey the is 0; this helps to ensure, if tII'eS grow from south to
geometric shape of the6 x 16 tile bit gadget that each individual north and have not yet enforcéd> m, then the most

tile in this figure represents, geometrically enforcingesgnent on  sjgnificant bit ofi may be chosen equal to 1 to enforce
the bits of adjacent bit gadgets. this

o !

The fault-tolerance is achieved entirely through the Figure 5¢ shows the tiles that ensure that two single-
geometric design of the bit gadgets, and the choicestrength glues designed to be an anchor point for vertical
of binding paths within them. The requirements (a),counters are placed on the top of a counter-value in the
(b), and (c) are achieved through careful selection ohorizontal counter if and only if the counter-value is
the north-south glues that connect bit gadgets to eacht an appropriate position to space the vertical counters
other. For the sake of meeting these three requirementsut evenly. This is accomplished by first determining the



number,r, which will be represented by the rightmost
counter-value for which this will be the case. Then,
whenever the numberrepresented by a counter-value
shares the same least significant bits with r, the
northern glues are present to anchor a vertical counter.
Additionally, in the special case where all bits of offiiEES
match those ofr, a pair of northern glues unique to
that position are present, to ensure that the special case,
rightmost vertical counter with the necessary padding
to fill out the width to exactlyn, can attach. oF

2) Geometric Design for Fault-ToleranceOn the
assumption that the three requirements in the previous
section can be met for each counter-value that forms, we
now describe how to use geometry and “synchronization
primitives” involving careful placement of glues to
ensure that even at temperature 1, unwanted structures
cannot grow that will be stable at temperature 2. Recall
that at temperature 2, the counter-values of the counter
of Section Il enforce that binding between adjacent
counter-values cannot occur until both counter-values i
are fully assembled; this occurs because the path (con-
sisting of all strength-2 glues) from one single-strength
inter-counter-value glue to another goes through every
bump of the counter-value. Hence, to have both glues

present, the entire counter-value must also be present,_. _
igure 6: The gadgets that combine to form the counter-values

Our construction enforces that no structure produciblet a counter. The tos gadgets that are labeled with bit values are
even at temperature 1 can stably attach to the easf height13 rather thanl6 for the others, and are used only for the
of counter-valuei unless it contains enough of the most S|gn|f|can_t bit in a counter value in order to compengate

. the 3 rows of tiles necessary for the gadgets that attach to the top
bumps of its westmost counter-value to enforce thatind bottom of the counter and hold the counter values togeizek
binding requires that counter-value to represent1. black lines represent the strengttbonds and forming the bump and
This is enforced by the following constraint: every path 9€nt patterns to represent bit values. The red line is a dobohd

. . A . representing the single point of connection between the“paths
(including strength-1 glues) connecting the two inter-making up the gadget; see the main text for an explanatiorhef t
counter-value glues of counter-valihat intersects any i)eddbr?ndS’ sigrzjificance. BILrjf siciuaresd rﬁprese/rgt streh@glsds"that

_ . . ind hairpin gadgets to each other and the top/bottom gadgeliow
counter Valuej > ,also passes throth every bumpsquares represent strength-1 bonds that are used for dinadithe
of the counter-valug + 1. Therefore, enough of the yeriical counters.

leftmost counter-value of this structure is guaranteed to
be present to ensure that it can only bind to the right Ofeasiest to imagine growing the bits of the southward
counter-value if its leftmost counter-value represents path, then turning around and guessing those same bits
i+ L while growing the northward path. Each bit along a
To enforce that a path from some part of counter-single path is represented by what we will caliairpin
valuesi to some part of counter-value- 2 must traverse gadget one southward and one northward hairpin gad-
the entire height of counter-value-1, we must enforce  get (though unconnected to each other) form a single bit
that a path traverses southward through the bumps Qfadget. To ensure that improper guesses do not result
counter-value + 1, and then traverses northward again in iunk assemblies that cannot grow any further, we use
before moving on to counter-value+ 2. But since g similar motif to the “single-strength glues at opposite
the path cannot “short-circuit” there must be no gluesends” used in Section Ill, within the hairpin gadgets
between the southward and northward paths except ahemselves. That is, hairpin gadgets can only bind stably
the bottom of the counter-value. The bumps and dentgo the north of other hairpin gadgets when fully formed,
on the east side of the southward path must be faltth”}(thh prevents a hairpin gadget that does not match its
represented on the east side of the northward path. Comp|ementary hairpin gadget from |0cking in. Figure
Even though the bits can grow in any order, it is 7 shows part of a counter formed from these gadgets.
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The white hairpin gadgets are “southward growing”tolerant) tile assembly system that uniquely assembles
(again, if we imagine tracing a path from counter-valuean n x n square using)(logn/loglogn) unique tile

1 to counter-valug + 1, bearing in mind that the two- types, a bound that was shown asymptotically tight by
handed assembly can grow in other orders), and the graRothemund and Winfree [19]. Since our construction
hairpin gadgets are “northward growing”. usesO(logn) tile types, an obvious open question is
whether there is a fuzzy temperature fault-tolerant tile
assembly system that uses the asymptotically optimal
g O(logn/loglogn) to uniquely assemble am x n
square. Previous papers [20]-[22] have focused on
running time for self-assembled shapes. This is a partic-
ularly difficult problem for two-handed assembly. The
papers attacking the case of the two-handed model [21],
[22] expend much effort to derive the expected assembly
time for the much simpler problem of assembling a 1-
dimensionall x n line from n unique tile types that
each encode a different position in the line. It is an
open problem, first stated in [21], to prove upper or
lower bounds for the optimal time to assemble a square
under the two-handed model. It is also an open problem
to derive the expected time to completion for our more
complicated construction of a fuzzy temperature fault-
tolerant square.
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The problem of square-building is common in tile-
Figure 7: An example of the rightmost columns of the width- a_ssembly In pa_rt be(.:ause a square 1s arguably the
counter, counting fron1100 to 1111. simplest shape in which the “algorithmic” aspects of
self-assembly affect variables such as tile complexity
Intuitively, the only connection between a white “left- non.trivially, making it a useful benchmark for testing
half” of a counter-value and the gray “right-half” of that new theoretical techniques. Algorithmic self-assembly
counter-value is through the southern row. Northwardgeserves the label “algorithmic” because of its compu-
growth from this row is kept consistent by ensuring thattational universality [5]. It is an open problem to show
no hairpin gadget can stabilize to the hairpin gadgehow to simulate an arbitrary algorithm (encoded, for
beneath it until the red double-bond is present. Sinc§nstance, as a Turing machine or a cellular automaton)
every path from this red double-bond to a blue single-ynder the fuzzy-temperature fault tolerance constraint.
bond on the south of the same hairpin gadget goeshis would require an appropriate formalization the
through the bumps of that gadget, the gadget canndiotion of “simulate an algorithm” under the two-handed
stabilize unless it is consistent with what has alreadyaTAM. In the seeded aTAM, for instance, one can state
grown to the left or right of it (and if nothing has that asingle tile setT simulates an algorithmi on
already, thent determines what must be consistent with gny input. An inputz is given to 7 by means of
it). ) arranging some tiles frof into a finiteseed assembly
Conversely, southward growth, which can lock aihat represents in a straightforward way. A possible
hairpin gadget to the hairpin gadget to its nortthout  \yay (hut not necessarily the only way) to solve this open
necessarily agreeing with the hairpin to its left or right, problem would be to show how to construct, for each
nevertheless cannot stabilize at temperature 2 Witho”éingle-tape Turing machind/ and each input string
growing enough of those bumps to enforce agreement, 5 fuzzy-temperature fault tolerant tile system with
This is because the bottom row must be present tQ(|M |+ |z|) tile types that self-assembles an assembly
connect a white counter-value half to its gray half, andyhose rows (each row possibly more than one tile high)
both must be present to connect that counter-value t@epresent the entire configuration historydfon input
the previous (left) counter-value. x (which is how a standard simulation in the seeded
VI. CONCLUSION aTAM proceeds, see for example [19]).

Adleman, Cheng, Goel, and Huang [20] show that for Other proofreading papers such as [8] use a “block-
eachn there is a (seeded, single-tile addition, non-fault-replacement” scheme to convert any tile system (in a



certain class such as rectilinear tile systems) into a-faultfault-tolerant square fronO(logn) tile types that is

tolerant tile system, in which each tile in the original robust to “3-D floppiness”, and an open experimental
tile system is represented by a square block of tiles irproblem to design physical molecular tiles that are
the fault-tolerant system. Some tile systems may eveinflexible enough to allow the use of programmed
have such a conversion done with no scaling factor [9]steric protection as a reliable design tool. Another open
[23]. It is an open question to show how to do such aexperimental problem in two-handed tile assembly is
conversion on a “natural” class of tile systems, in orderto determine, for a given tile implementation, what is
to make the resulting tile system fuzzy-temperaturethe largest size of supertiles that will reliably combine.
fault-tolerant. While it is clear that single tiles experience enough

Our construction is “floppy”: many adjacent tiles in motion in solution to move into positions necessary to
the final square are not connected by glues. One woul§ombine to growing assemblies, and most likely that
expect that more strongly connected squares are moupertiles consisting of small numbers of tiles W|Il_also
physically resilient, and they may also help to enforced0 S0, there may be an upper bound on the size of
the steric protection utilized in our construction, so Supertiles that reliably attach.
this roppir_1ess may be a disadvantage. Given the goal ACKNOWLEDGMENT
of preventing all erroneous temperature-1 growth from

stabilizing, it seems unlikely thatfall square— a square . . )
in which every neighboring pair of tiles interact with ments to this paper. This research was supported in part
by National Science Foundation Grants 0652569 and

positive strength — could be constructgd_usmg a.fuzzy0728806 and by a Computing Innovation Fellowship
temperature fault-tolerant system. But it is conceivable )
rant to David Doty.
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