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Abstract—We consider the problem of fault-tolerance
in nanoscale algorithmic self-assembly. We employ a stan-
dard variant of Winfree’s abstract Tile Assembly Model
(aTAM), the two-handed aTAM, in which square “tiles”
– a model of molecules constructed from DNA for the
purpose of engineering self-assembled nanostructures –
aggregate according to specific binding sites of varying
strengths, and in which large aggregations of tiles may
attach to each other, in contrast to theseeded aTAM, in
which tiles aggregate one at a time to a single specially-
designated “seed” assembly. We focus on a major cause
of errors in tile-based self-assembly: that of unintended
growth due to “weak” strength-1 bonds, which if allowed
to persist, may be stabilized by subsequent attachment of
neighboring tiles in the sense that at least energy 2 is now
required to break apart the resulting assembly; i.e., the
errant assembly isstable at temperature 2.

We study a common self-assembly benchmark problem,
that of assembling ann×n square usingO(log n) unique
tile types, under the two-handed model of self-assembly.
Our main result achieves a much stronger notion of
fault-tolerance than those achieved previously.Arbitrary
strength-1 growth is allowed; however, any assembly that
grows sufficiently to become stable at temperature 2 is
guaranteed to assemble into the correct final assembly of
an n×n square. In other words, errors due to insufficient
attachment, which is the cause of errors studied in earlier
papers on fault-tolerance, are preventedabsolutely in our
main construction, rather than only with high probability
and for sufficiently small structures, as in previous fault-
tolerance studies.

I. I NTRODUCTION

Tile-based self-assembly is a model of “algorith-
mic crystal growth” in which square “tiles” represent
molecules that bind to each other via specific and
variable-strength bonds on their four sides, driven by
random mixing in solution but constrained by the local

binding rules of the tile bonds. Beginning with the
experimental work of Seeman in the early 1980s [1],
such molecules have been engineered from DNA in the
laboratory, and used to create a variety of sophisticated
self-assembled structures [2], [3] such as Sierpinski
triangles and binary counters. Erik Winfree [4], [5],
based on experimental work of Seeman [1], modified
Wang’s mathematical model of tiling [6] to add a
physically plausible mechanism for growth through
time. Winfree defined two models of tile-based self-
assembly, the abstract Tile Assembly Model (aTAM)
and the kinetic Tile Assembly Model (kTAM). In both
models, the fundamental components are un-rotatable,
but translatable square “tile types” whose sides are la-
beled with glue “colors” and “strengths.” Two tiles that
are placed next to each otherinteract if the glue colors
on their abutting sides match, and in the aTAM, a tile
bindsto an assembly if it interacts on all sides with total
strength at least a certain ambient “temperature,” usually
taken to be 2. In particular, if a tile has two strength-1
glues, both of them must match the corresponding glues
in the assembly in order to remain bound.

In the more kinetically plausible kTAM, tiles may
bind even if they interact with strength less than 2,
but are assumed to detach at a rate inversely and
exponentially proportional to the strength with which
they interact. Hence tiles attached with strength 1 detach
“quickly”, and tiles attached with strength 2 detach
“slowly”. A tile attached with only strength 1 (a so-
called “insufficient attachment”) represents a potential
error, as its other strength-1 glue may be mismatched
with the abutting portion of the assembly, or mis-
matched with what is eventually intended to be placed
at that position. However, since strength-1 attachments



are assumed to detach after a short time, an insufficient
attachment actualizes into a permanent error only if
another tile first binds to secure the faulty tile in place,
causing the entire assembly to become stable at tem-
perature 2. That is, by “wandering” temporarily through
the space of assemblies producible at temperature 1, we
may arrive at an assembly not producible at temperature
2, yet that, once formed, is stable at temperature 2. The
development of physical and algorithmic mechanisms
for preventing such errors remains a formidable chal-
lenge in nanoscale self-assembly.

Stated informally, the kTAM refines the aTAM by
endowing it with a mechanism for error (temporary
binding of tiles with strength 1) as well as a mechanism
for error correction (eventual detachment of tiles, even
those bound with strength 2). Indeed, numerous papers
have used these two mechanisms for high-probability
error correction in the kTAM [5], [7]–[11]. In each of
these papers except [5], the same basic principle is used
to achieve error correction, known asproofreading. If
an insufficient attachment results in mismatching glues,
this error is “amplified” by forcing further growth to
require many other insufficient attachments to stabilize.
Since these happen only slowly, the assembly process
is slowed down, giving time for the tiles that sta-
bilized the original insufficient attachment to detach,
thus correcting the original error. In [5], Winfree also
shows how errors are removed through the detaching of
tiles, although there is no “error-amplification process”;
Winfree shows that by setting the ratio of the forward
rate to the reverse rate sufficiently small (thus slowing
down the entire assembly process), erroneous tiles will
detach with high probability.

We work in a variant of the aTAM known as the
two-handedaTAM (see, for example, [12]). Winfree’s
original model, theseededaTAM [4], [5], stipulates that
assembly begins from a specially-designated “seed” tile
type, and all binding events consist of the attachment
of a single tile to the growing assembly that contains
the seed. The seed thus serves as anucleation point
from which all further growth occurs. In reality, such
single-point nucleation is difficult to enforce [13], [14]
as tiles with matching glues may attach to each other
in solution, even if neither of them is connected to
the seed tile. The two-handed aTAM models this sort
of growth by dispensing with the idea of a seed, and
simply defining an assembly to be producible if 1) it
consists of a single tile (base case), or 2) it results from
the stable aggregation of two producible assemblies
(recursive case).

Not only is the two-handed aTAM a more realistic

model in the sense of accounting for unseeded nucle-
ation, it allows us to use the geometry of partially-
formed assemblies, rather than relying solely on (error-
prone) glue specificity, to enforce binding rules between
subassemblies. This phenomenon, geometric blocking
that prevents bond formation, is well-studied in chem-
istry and is known assteric hindrance[15, Section 5.11]
or, particularly when employed as a design tool for
intentional prevention of unwanted binding in synthe-
sized molecules,steric protection[16]–[18]. Using the
mechanism of steric protection, we are able to achieve
a much stronger notion of fault-tolerance than that de-
scribed in previous error-correction papers. Informally,
our model of fault-tolerance, which we term thefuzzy
temperaturemodel, is as follows (a formal description is
given in Section IV). Similarly to the kTAM, we allow
strength-1 insufficient attachments to occur. However,
we do not model forward or reverse rates of growth as
in the kTAM, as there is no need to employ the higher
reverse rates of insufficient attachments: any insufficient
attachments that lead to an assembly that is stable at
temperature 2were never errors in the first place, as
such an assembly can always lead to an assembly that
was producible with only strength-2 growth. That is,
viewed as a modification of the aTAM, we allow the
temperature to be “fuzzy”, occasionally drifting from
2 down to 1, which allows strength-1 growth for as
long as the temperature remains low. However, once
the temperature is raised back to 2, thus dissolving
any structure that is stable only at temperature 1, the
stable assemblies that are left over are all assemblies
that are already producible at temperature 2 or that
can grow into a temperature-2-producible assembly.
Therefore, while insufficient attachments can occur,
errors due to insufficient attachments cannot occur,
since temperature-2 stabilization of such errors, which
our construction prevents, is required for the errors to
become permanent.

We focus on the problem of assembling ann × n
square, a common benchmark problem for demon-
strating the use of self-assembly techniques (see, for
example, [19]). In particular, our main result is the
construction of a tile set withO(logn) unique tile types
(which is close to theΩ(log n/ log logn) optimal lower
bound [19]) that uniquely assembles into ann×n square
in the two-handed aTAM at temperature 2, and that has
the fuzzy-temperature fault-tolerance property described
above. In keeping with the “wandering” analogy from
the beginning of this section, our construction allows
arbitrary wandering in the space of assemblies pro-
ducible at temperature 1, but funnels all such wandering
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towards a single unique terminal assembly, or towards
the oblivion of destruction at temperature 2.1

This paper is organized as follows. Section II gives
an informal description of the two-handed aTAM. Sec-
tion III shows a construction of a non-fault-tolerant
counter, to introduce some of the main ideas of the full
construction. Section IV defines the fuzzy temperature
model of fault-tolerance. Section V describes a high-
level overview of the main construction and explains
the basic techniques employed. Section VI concludes
the paper and states open questions.

II. I NFORMAL DESCRIPTION OF THETWO-HANDED

ABSTRACT TILE ASSEMBLY MODEL

This section gives a brief informal sketch of the two-
handed temperature-2 abstract Tile Assembly Model
(aTAM).

A tile type is a unit square with four sides, each
having a glue consisting of alabel (a finite string)
and strength (0, 1, or 2). We assume a finite setT
of tile types, but an infinite number of copies of each
tile type, each copy referred to as atile. A supertile
(a.k.a.,assembly) is a positioning of tiles on the integer
latticeZ2. Two adjacent tiles in a supertileinteract if the
glues on their abutting sides are equal and have positive
strength. Each supertile induces abinding graph, a grid
graph whose vertices are tiles, with an edge between two
tiles if they interact. The supertile isτ -stable if every
cut of its binding graph has strength at leastτ , where
the weight of an edge is the strength of the glue it repre-
sents. That is, the supertile is stable if at least energyτ
is required to separate the supertile into two parts. Atile
assembly system(TAS) is a pairT = (T, τ), whereT
is a finite tile set andτ is the temperature, usually 1 or
2. Given a TAST = (T, τ), a supertile isproducibleif
either it is a single tile fromT , or it is theτ -stable result
of translating two producible assemblies. A supertileα
is terminal if for every producible supertileβ, α andβ
cannot beτ -stably attached. A TAS isdirected (a.k.a.,
deterministic, confluent) if it has only one terminal,
producible supertile. Given a connected shapeX ⊆ Z

2,
a TAS T producesX uniquely if every producible,

1We emphasize that this isnot the same as saying that our con-
struction assembles ann×n square at temperature 1: at temperature
1, many different terminal assemblies can nondeterministically form,
most of which are junk. Our construction ensures that when the
temperature is raised to 2, all the junk dissolves away, leaving only
assemblies that are required to assemble the square, and which could
have grown anyway had the temperature remained at 2. In fact,it
is an open problem, first stated by Winfree and Rothemund in [19],
to uniquely assemble ann× n square at temperature 1 using fewer
than2n− 1 tile types (compared to our use ofO(logn) tile types).
Rothemund and Winfree conjectured that2n − 1 is a strict lower
bound for this problem.

1

1

1

1

C
4

C
3

C
2

C
1

C
3

C
2

C
1

C
0

0 0

0

0

0

A
4

A
4

A
4

A
3

A
2

A
3

A
2

A
1

C
0

A
3

A
2

A
3

A
2

A
1

A
4

C
4

A
3

A
2

A
1

C
3

C
2

C
1

C
0

1 0

0

0

0 1

1

1

1

1

1

0

0

1

1

1

0

0

0

Figure 1: Tile set for two-handed assembly of a lengthn binary
counter usingO(logn) tile types.

terminal supertile places tiles exactly on those positions
in X (appropriately translated if necessary).

III. T WO-HANDED ASSEMBLY OF A COUNTER

FROM O(log n) TILE TYPES

In this section we describe the two-handed assembly
of a (non-fault-tolerant) counter fromO(log n) tile
types, as a warmup to our full fault-tolerant square
construction. While this technique does not achieve
fault-tolerance, it introduces a novel new counter design
technique that utilizes 1) geometry to enforce/restrict
specific assemblies and 2) non-determinism of super-
tile formation and attachment to explore the space of
possible intermediate assemblies, despite the existence
of only one unique terminal assembly. This technique
forms the basis for the more involved fuzzy fault
tolerant construction.

The tile set for the counter is depicted in Figure 1.
In this figure, an example tile set for a 4 bit counter
that counts from 0 to 15 is provided. Tile types that
share unique, full strengthτ = 2 glues are connected
by a black line that crosses over the bonded edge. Other
glues in the system include strengthτ = 2 gluesAi and
Ci for i from 0 to logn for a lengthn counter, and two
strengthτ = 1 glues denoted by the green and blue
squares.

Conceptually, the tile set of Figure 1 consists of a
number of blocks for each bit position of a binary
counter. These blocks assemble into heightO(log n)
columns, where the representative block for each bit is
determined non-deterministically. Further, the geometry
of each block encodes a bit on both the left and right
side of the block by adent that appears at either the
upper or lower half of the block. In the case of orange
rollover blocks, the left side encodes the value 1, while
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the right encodes the value 0; these represent 1 bits less
significant than the least significant 0, which all change
from 1 to 0 on the next increment. For the yellowleast
significant 0blocks, the left dent encodes the value 0
and the right encodes 1. For the greycopyblocks, the
left and right encode the same value, with one type of
grey block for “1” and another for “0”; these represent
bits more significant than the least significant 0, which
remain the same on the next increment.

Figure 2:Fully assembled counter from the tiles in Figure 1.

The glue types that connect blocks from one row to
another ensure that any assembled column consists of
red blocks from rows 1 tor (r at least 1 and at most
logn), followed by a yellow block in rowr + 1 (if
r < log n), followed by grey blocks (either type) in rows
r + 2 to row logn (if r + 1 < logn). This pattern has
the property that for any(logn)-bit string b, a column
may assemble that encodes that string in the geometry
of the dents on the left side of the column, and the right
side of the column in turn encodesb+1. Additionally, a
fully assembled column can also attach the two four-tile
chains of Figure 1 to both the topA glue and bottom
C glue of the column. For any two assembled columns,
the strengthτ = 1 green and blue glues combined give
a strengthτ = 2 affinity for any two assembled columns
to attach. However, due to the rigid teeth-like geometry
of the columns, only sequential columns can get close
enough to realize the affinity and assemble under the
two-handed assembly model. The unique assembly of
the tile set of Figure 1 is shown in Figure 2.

In the example provided, we are specifically consid-
ering the special case of a counter that grows to a power
of 2 length. More generally, it is possible to assemble
only columns that encode values greater or equal to a
given initial value, thereby allowing the assembly of
a length-n counter for generaln. However, we leave
these details for the extended fault tolerant version of
the construction.

The counter in this section is not fuzzy fault tolerant.
In particular, the supertile in Figure 3 is producible at
temperatureτ = 1 (but not τ = 2 because the two-
handed model requires that at most2 supertiles, both of
which are stable atτ = 2, combine in any step), stable
at temperatureτ = 2, but cannot grow into the correct
uniqueτ = 2 assembled counter of Figure 2.
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Figure 3:The basic temperatureτ = 2 counter in this section is not
fuzzy fault tolerant. The above supertile is producible at temperature
τ = 1, stable at temperatureτ = 2, and cannot grow into the desired
unique temperatureτ = 2 final assembly of Figure 2.

IV. FUZZY TEMPERATUREFAULT-TOLERANCE

In this section we introduce the fuzzy temperature
model of fault-tolerance in self-assembly. The fuzzy
temperature assembly model permits rampant temper-
ature τ = 1 growth of supertiles under the two-
handed assembly model. We are then interested in what
producible temperatureτ = 1 assemblies become stable
at temperatureτ = 2. If even a single temperatureτ = 1
assembly becomes stable at temperatureτ = 2 and is
inconsistent with what can be built in a purely tem-
peratureτ = 2 assembly model, the system is deemed
error prone. On the other hand, if all temperatureτ = 1
assemblies that are stable at temperatureτ = 2 have a
valid temperatureτ = 2 path of growth to a supertile
that is producible under a pure temperatureτ = 2
model, then the system is deemedfuzzy temperature
fault-tolerant. Put another way, even with arbitrary
erroneous strength 1 attachments, a fuzzy temperature
fault-tolerant system guarantees that such errors cannot
stabilize at temperature 2 unless the stabilized supertile
can itself grow into acorrect temperatureτ = 2
assembly, which means such an assembly is not really
an error.

Formally, for a given initial tile setT , we define fuzzy
temperature fault-tolerance in terms of the following
four sets of supertiles: (1) Thedependably produced
(DP) supertiles are those that can be assembled at tem-
peratureτ = 2 under the two-handed assembly model.
Formally, DP is the set of all producible supertiles
for the two-handed assembly system(T, 2); (2) The
dependably terminal(DT) supertiles are all supertiles in
DP that cannot grow any further at temperatureτ = 2.
Formally, DT is the set of terminal, producible supertiles
for the two-handed assembly system(T, 2); (3) The
plausibly produced(PP) supertiles are those that can
be assembled at temperatureτ = 1. Formally, PP is
the set of all producible supertiles for the two-handed
assembly system(T, 1); and (4) Theplausibly stable
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(PS) supertiles are all supertiles in PP that are stable at
temperatureτ = 2.

Intuitively, DT denotes a final collection of supertiles
that can be expected to be built given enough time for
assembly in a temperature2 system. On the other hand,
due to the occasional assembly of supertiles with only
strength 1 attachments, elements in PP will (plausibly)
be assembled. Elements of PP that are not stable at
temperatureτ = 2 intuitively will eventually break
apart and are not of concern. However, these assemblies
may grow to a point in which they become stable at
temperatureτ = 2, in which case they will not break
apart. Such assemblies constitute the set PS. The goal is
to design a system such that for each elementα of PS,
every terminalβ into whichα can grow at temperature
τ = 2 is an element of DT (writtenPS ⇒ DT ), and
that DT is the set of desired shapes to be assembled.
Put another way, we want to avoid the design of an
error prone system in which stable assemblies that are
inconsistent with the desired final assembly are built by
erroneousτ = 1 strength attachments.

More precisely, the fuzzy temperature fault-tolerance
design problem is as follows:

fuzzy temperature fault-tolerance design prob-
lem:: Given a target shapeΥ, the goal is to design
a tile set such that: (1)PS ⇒ DT (fuzzy temperature
fault-tolerance constraint); and (2) all supertiles in DT
have shapeΥ. (Desired goal shape is the unique output
of the assembly.)

For the remainder of this paper, we attempt to solve
the fuzzy temperature fault-tolerance problem for the
benchmark example of ann × n square. As a metric,
we are interested in minimizing the number of distinct
tile types required to assemble a square while adhering
to the fuzzy temperature fault-tolerance constraint; the
problem is trivialized if one allowsn2 different tile
types to hard-code each position in the square (or even
usingO(n) tile types to use the non-cooperative “comb”
structure from [19]). We show that a sleekO(log n)
tile complexity is achievable, which is very close to the
O
(

logn

log logn

)

bound that can be achieved with no fault-
tolerance constraint (in the seeded, single-tile addition
model).

V. OVERVIEW OF FAULT-TOLERANT SQUARE

CONSTRUCTION

This section gives a high-level description of the main
construction of this paper, a square that assembles under
the fuzzy temperature fault tolerance model.

Figure 4: A simplified diagram of the components of a fulln×n

square. Components are not represented to scale.

A. Square

As is common in many self-assembly constructions
for square-building, most of the work is in constructing
counters that calculate the dimensions of the square.
Figure 4 shows a high-level diagram of how to compose
these counters. The horizontal counter and the vertical
counters are constructed in conceptually the same way,
with minor differences in the actual implementation.
Most of the effort of our main construction is in
encoding the numbern into the tiles that grow a counter,
so that it can control the length to which the counter
grows, in a fault-tolerant way.

B. Counter

For simplicity we describe only the horizontal
counter. The vertical counters are constructed similarly,
with the exception that they are slightly simpler because
of the need for the horizontal counter to correctly space
out its bonds designed to connect the horizontal counter
to the various vertical counters.

Define k ≡ ⌊logn⌋ + 2 to be 1 plus the number
of bits in n. As in Section III, the counter consists of
≈ n columns (actuallyn divided by the width in tiles
of a column, which is a constant, but for simplicity of
discussion we will assume that there aren columns),
each representing an integer between2k−n and2k−1.
Note that we refer to columns as “counter-values.” Each
counter-value is connected to the next by two strength-
1 inter-counter-value glues, and correct inter-counter-
value binding is enforced using bumps and dents as in
Section III.

C. Counter-Value

As in Section III, counter-values form randomly from
≈ logn “bit gadgets”, each of constant size, with each
bit selected at random. Figure 6 shows the bit gadgets,
and Figure 7 shows some of them attaching to form
a few counter-values of a counter. Beyond the need
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for fuzzy temperature fault-tolerance, these bit gadgets
must meet additional requirements. We first describe
how to meet these requirements, and then describe how
to achieve fault-tolerance.

1) Glue Design for Additional Requirements of
Counter-Values:The logical requirements that counter-
values must meet are:
(a) The right side of a counter-value must representi+1

if the left side representsi. This was already needed
in Section III.

(b) Each counter-value must be guaranteed to form an
integer in the range

[

2k − n, 2k − 1
]

, so that the
counter has exactlyn counter-values.

(c) Only a subset of appropriately spaced counter-
values should have glues on the north to allow
the vertical counters to bind, since the horizontal
width of each vertical counters isΘ(logn), whereas
the horizontal width of each counter-value in the
horizontal counter isO(1). This is done by choosing
a power of two2m (for m just large enough that
2m > width of a vertical counter), and placing the
glues to the north every2m counter-values.

(a) Increment a
binary number

(b) Enforces that
the left number is
greater than the
right

(c) Detects if the binary number
formed 1) is equal to a given
number, or 2) matches a given
number of the low-order bits of
that number

Figure 5: Templates for tile sets that perform subsets of the
functionality of the hairpin gadgets (described in more detail in
Section V-C2). Though not shown, each tile has strength-2 glues on
the north and south, implemented in the actual tile set as a pair of
single-strength bonds for fault-tolerance purposes. The east and west
“bit values” in Figure 5a are represented in the actual tile set by the
geometric shape of the16 × 16 tile bit gadget that each individual
tile in this figure represents, geometrically enforcing agreement on
the bits of adjacent bit gadgets.

The fault-tolerance is achieved entirely through the
geometric design of the bit gadgets, and the choice
of binding paths within them. The requirements (a),
(b), and (c) are achieved through careful selection of
the north-south glues that connect bit gadgets to each
other. For the sake of meeting these three requirements,

we can therefore logically view each bit gadget as a
single tile, with double-strength glues on the north and
south. The values of these glues will then be carried
through to every actual tile that makes up a bit gadget,
and combined with the glues that hard-code the relative
position of each tile in the bit gadget, allow us to
conceptually separate the problem of fault tolerance
from that of meeting the three requirements discussed
above. Finally, we can conceptually separate these three
problems from each other, designing tiles to meet those
requirements separately, and combine them in a cross-
product construction. Figure 5 shows the three tile sets
that meet the requirements (a), (b), and (c).

In each case, we take care to ensure that the re-
quirement is met no matter in which order the tiles
aggregate. Nonetheless, it is easiest to describe their
operation as though the northmost tile is first present,
and the counter-value assembles north-to-south; i.e.,
most significant bit to least significant.

Figure 5a shows the tiles that implement incrementing
to ensure that the east bits representi+1 if the west bits
representi. If the position of the least significant 0 ini
is p, then all bits at positions abovep are equal, all bits
at positions belowp are 1 fori and 0 fori+ 1, and at
positionp the bit is 0 fori and 1 fori+1. Therefore the
tiles nondeterministically guess a positionp at which to
make this transition, and enforce that all tiles abovep
have equal bits and all tiles at or belowp obey the stated
requirement.

Figure 5b shows the tiles that implement range-
checking to ensure that the numberi that is constructed
is greater thanm = 2k − n. (Since preciselyk bits are
assembled,i < 2k.) Imagine comparingi to m starting
at the most significant bit. We must enforce that there
is at least one bit difference, and that in the position of
most significance where there is a difference that the bit
from i is 1 and the bit fromm is 0. As before, the tiles
nondeterministically guess at which position the first
disagreement will occur. Below the first disagreement,
the bits ofi are selected nondeterministically. We chose
the value ofk so that we known’s most significant bit
is 0; this helps to ensure, if tiles grow from south to
north and have not yet enforcedi > m, then the most
significant bit ofi may be chosen equal to 1 to enforce
this.

Figure 5c shows the tiles that ensure that two single-
strength glues designed to be an anchor point for vertical
counters are placed on the top of a counter-value in the
horizontal counter if and only if the counter-value is
at an appropriate position to space the vertical counters
out evenly. This is accomplished by first determining the
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number,r, which will be represented by the rightmost
counter-value for which this will be the case. Then,
whenever the numberi represented by a counter-value
shares the same least significantm bits with r, the
northern glues are present to anchor a vertical counter.
Additionally, in the special case where all bits ofi
match those ofr, a pair of northern glues unique to
that position are present, to ensure that the special case,
rightmost vertical counter with the necessary padding
to fill out the width to exactlyn, can attach.

2) Geometric Design for Fault-Tolerance:On the
assumption that the three requirements in the previous
section can be met for each counter-value that forms, we
now describe how to use geometry and “synchronization
primitives” involving careful placement of glues to
ensure that even at temperature 1, unwanted structures
cannot grow that will be stable at temperature 2. Recall
that at temperature 2, the counter-values of the counter
of Section III enforce that binding between adjacent
counter-values cannot occur until both counter-values
are fully assembled; this occurs because the path (con-
sisting of all strength-2 glues) from one single-strength
inter-counter-value glue to another goes through every
bump of the counter-value. Hence, to have both glues
present, the entire counter-value must also be present.

Our construction enforces that no structure producible
even at temperature 1 can stably attach to the east
of counter-valuei unless it contains enough of the
bumps of its westmost counter-value to enforce that
binding requires that counter-value to representi + 1.
This is enforced by the following constraint: every path
(including strength-1 glues) connecting the two inter-
counter-value glues of counter-valuei that intersects any
counter-valuej > i, also passes through every bump
of the counter-valuei + 1. Therefore, enough of the
leftmost counter-value of this structure is guaranteed to
be present to ensure that it can only bind to the right of
counter-valuei if its leftmost counter-value represents
i+ 1.

To enforce that a path from some part of counter-
valuei to some part of counter-valuei+2 must traverse
the entire height of counter-valuei+1, we must enforce
that a path traverses southward through the bumps of
counter-valuei+1, and then traverses northward again
before moving on to counter-valuei + 2. But since
the path cannot “short-circuit” there must be no glues
between the southward and northward paths except at
the bottom of the counter-value. The bumps and dents
on the east side of the southward path must be faithfully
represented on the east side of the northward path.

Even though the bits can grow in any order, it is

0 0 0

1

111

1

111 1

1

0 0 00 0

0 1

0 0

0 1

Figure 6: The gadgets that combine to form the counter-values
of a counter. The top6 gadgets that are labeled with bit values are
of height13 rather than16 for the others, and are used only for the
most significant bit in a counter value in order to compensatefor
the 3 rows of tiles necessary for the gadgets that attach to the top
and bottom of the counter and hold the counter values together. Dark
black lines represent the strength-2 bonds and forming the bump and
dent patterns to represent bit values. The red line is a double bond
representing the single point of connection between the two“paths”
making up the gadget; see the main text for an explanation of the
red bonds’ significance. Blue squares represent strength-1 bonds that
bind hairpin gadgets to each other and the top/bottom gadgets. Yellow
squares represent strength-1 bonds that are used for binding to the
vertical counters.

easiest to imagine growing the bits of the southward
path, then turning around and guessing those same bits
while growing the northward path. Each bit along a
single path is represented by what we will call ahairpin
gadget; one southward and one northward hairpin gad-
get (though unconnected to each other) form a single bit
gadget. To ensure that improper guesses do not result
in junk assemblies that cannot grow any further, we use
a similar motif to the “single-strength glues at opposite
ends” used in Section III, within the hairpin gadgets
themselves. That is, hairpin gadgets can only bind stably
to the north of other hairpin gadgets when fully formed,
which prevents a hairpin gadget that does not match its
complementary hairpin gadget from locking in. Figure
7 shows part of a counter formed from these gadgets.
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The white hairpin gadgets are “southward growing”
(again, if we imagine tracing a path from counter-value
i to counter-valuei + 1, bearing in mind that the two-
handed assembly can grow in other orders), and the gray
hairpin gadgets are “northward growing”.

1,1 1,1 1,1 1,1 11 1 1

0,1 1 1 1 11,1 1,1 1,1

1,0

1,0 1,0

0 0 1 10,10,0 1,1

0 0 0,10,1 1 1

Figure 7: An example of the rightmost4 columns of the width-
counter, counting from1100 to 1111.

Intuitively, the only connection between a white “left-
half” of a counter-value and the gray “right-half” of that
counter-value is through the southern row. Northward
growth from this row is kept consistent by ensuring that
no hairpin gadget can stabilize to the hairpin gadget
beneath it until the red double-bond is present. Since
every path from this red double-bond to a blue single-
bond on the south of the same hairpin gadget goes
through the bumps of that gadget, the gadget cannot
stabilize unless it is consistent with what has already
grown to the left or right of it (and if nothing has
already, thenit determines what must be consistent with
it).

Conversely, southward growth, which can lock a
hairpin gadget to the hairpin gadget to its northwithout
necessarily agreeing with the hairpin to its left or right,
nevertheless cannot stabilize at temperature 2 without
growing enough of those bumps to enforce agreement.
This is because the bottom row must be present to
connect a white counter-value half to its gray half, and
both must be present to connect that counter-value to
the previous (left) counter-value.

VI. CONCLUSION

Adleman, Cheng, Goel, and Huang [20] show that for
eachn there is a (seeded, single-tile addition, non-fault-

tolerant) tile assembly system that uniquely assembles
an n × n square usingO(log n/ log logn) unique tile
types, a bound that was shown asymptotically tight by
Rothemund and Winfree [19]. Since our construction
usesΘ(logn) tile types, an obvious open question is
whether there is a fuzzy temperature fault-tolerant tile
assembly system that uses the asymptotically optimal
O(log n/ log logn) to uniquely assemble ann × n
square. Previous papers [20]–[22] have focused on
running time for self-assembled shapes. This is a partic-
ularly difficult problem for two-handed assembly. The
papers attacking the case of the two-handed model [21],
[22] expend much effort to derive the expected assembly
time for the much simpler problem of assembling a 1-
dimensional1 × n line from n unique tile types that
each encode a different position in the line. It is an
open problem, first stated in [21], to prove upper or
lower bounds for the optimal time to assemble a square
under the two-handed model. It is also an open problem
to derive the expected time to completion for our more
complicated construction of a fuzzy temperature fault-
tolerant square.

The problem of square-building is common in tile-
assembly in part because a square is arguably the
simplest shape in which the “algorithmic” aspects of
self-assembly affect variables such as tile complexity
non-trivially, making it a useful benchmark for testing
new theoretical techniques. Algorithmic self-assembly
deserves the label “algorithmic” because of its compu-
tational universality [5]. It is an open problem to show
how to simulate an arbitrary algorithm (encoded, for
instance, as a Turing machine or a cellular automaton)
under the fuzzy-temperature fault tolerance constraint.
This would require an appropriate formalization the
notion of “simulate an algorithm” under the two-handed
aTAM. In the seeded aTAM, for instance, one can state
that a single tile set T simulates an algorithmA on
any input. An inputx is given to T by means of
arranging some tiles fromT into a finiteseed assembly
that representsx in a straightforward way. A possible
way (but not necessarily the only way) to solve this open
problem would be to show how to construct, for each
single-tape Turing machineM and each input string
x, a fuzzy-temperature fault tolerant tile system with
O(|M |+ |x|) tile types that self-assembles an assembly
whose rows (each row possibly more than one tile high)
represent the entire configuration history ofM on input
x (which is how a standard simulation in the seeded
aTAM proceeds, see for example [19]).

Other proofreading papers such as [8] use a “block-
replacement” scheme to convert any tile system (in a
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certain class such as rectilinear tile systems) into a fault-
tolerant tile system, in which each tile in the original
tile system is represented by a square block of tiles in
the fault-tolerant system. Some tile systems may even
have such a conversion done with no scaling factor [9],
[23]. It is an open question to show how to do such a
conversion on a “natural” class of tile systems, in order
to make the resulting tile system fuzzy-temperature
fault-tolerant.

Our construction is “floppy”: many adjacent tiles in
the final square are not connected by glues. One would
expect that more strongly connected squares are more
physically resilient, and they may also help to enforce
the steric protection utilized in our construction, so
this floppiness may be a disadvantage. Given the goal
of preventing all erroneous temperature-1 growth from
stabilizing, it seems unlikely that afull square– a square
in which every neighboring pair of tiles interact with
positive strength – could be constructed using a fuzzy
temperature fault-tolerant system. But it is conceivable
that more elaborate use of synchronization could allow
extra “support substructures” to be used to make our
construction “more fully connected”, while preserving
the fuzzy temperature fault-tolerance. A subproblem is
to define a reasonable notion of “floppiness” that is
physically meaningful.

Additionally, the two-handed aTAM, while more re-
alistic than the seeded single-tile attachment aTAM in
the sense that it allows for nucleation without a seed, is
perhaps less realistic in another sense. The DNA tiles
that the aTAM was originally conceived to model, while
ostensibly two-dimensional, are not necessarily confined
to the plane. In particular, the steric protection that we
employ requires the tiles in thex-y plane to stay at
positionz = 0. If two mismatching gadgets collide, but
one of them “slides” over the other by moving its bumps
out of the plane intoz > 0, then this could allow the
cooperative strength-1 bonds to connect even between
mismatching gadgets.

However, floppiness is not an unbreakable law of
physics; it is an artifact of one particular experimental
method of using DNA to create self-assembling tiles. It
is not necessarily infeasible to construct tiles by another
method that stay in the plane, or thicken them along the
z-axis so that some floppiness is tolerable while still
enforcing blocking due to steric protection. There are
macro-scale techniques for tile self-assembly that are
more sturdy and likely to stay in the plane [24], [25],
as well as nanoscale techniques for creating rigid DNA
structures [26], [27]. It remains an open theoretical
problem to design a construction of a fuzzy-temperature

fault-tolerant square fromO(log n) tile types that is
robust to “3-D floppiness”, and an open experimental
problem to design physical molecular tiles that are
inflexible enough to allow the use of programmed
steric protection as a reliable design tool. Another open
experimental problem in two-handed tile assembly is
to determine, for a given tile implementation, what is
the largest size of supertiles that will reliably combine.
While it is clear that single tiles experience enough
motion in solution to move into positions necessary to
combine to growing assemblies, and most likely that
supertiles consisting of small numbers of tiles will also
do so, there may be an upper bound on the size of
supertiles that reliably attach.
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