
Simulation of Self-Assembly in the Abstract Tile

Assembly Model with ISU TAS⋆

Matthew J. Patitz

Department of Computer Science
Iowa State University

Ames, IA 50011, U.S.A.
mpatitz@cs.iastate.edu

Abstract. Since its introduction by Erik Winfree in 1998, the abstract
Tile Assembly Model (aTAM) has inspired a wealth of research. As
an abstract model for tile based self-assembly, it has proven to be re-
markably powerful and expressive in terms of the structures which can
self-assemble within it. As research has progressed in the aTAM, the
self-assembling structures being studied have become progressively more
complex. This increasing complexity, along with a need for standard-
ization of definitions and tools among researchers, motivated the de-
velopment of the Iowa State University Tile Assembly Simulator (ISU
TAS). ISU TAS is a graphical simulator and tile set editor for designing
and building 2-D and 3-D aTAM tile assembly systems and simulating
their self-assembly. This paper reviews the features and functionality of
ISU TAS and describes how it can be used to further research into the
complexities of the aTAM. Software and source code are available at
http://www.cs.iastate.edu/~lnsa.

⋆ This research was supported in part by National Science Foundation Grants 0652569
and 0728806



1 Introduction

Numerous advances in science and technology are fueling rapid transformations
in the types of materials and structures that can be manufactured and the pro-
cesses for manufacturing them. On one hand, such advances allow us to build
ever larger structures due to the stronger, lighter, and more durable materials
that can be fabricated. On the other hand, breakthrough techniques for con-
trolling matter at microscopic levels have led to the amazing trend of shrinking
products, such as the incredible reduction in the size of computer processors as
dictated by Moore’s Law.

While there are numerous manufacturing techniques for building this diver-
sity of products, they tend to have fundamental similarities. Namely, they begin
with relatively large chunks of matter which are then cut, molded, or otherwise
shaped in a manner controlled by high-level, outside manipulation. Until now,
this ‘top down’ approach to manufacturing has been successful and sufficient,
but now, in order to meet ever more demanding challenges, research is being
conducted on an entirely new paradigm, a ‘bottom up’ approach.

Self-assembly is the process by which units of matter autonomously combine
to form structures. By pursuing methods of nanoscale self-assembly, researchers
are hoping to eventually create systems where they design molecular pieces, mix
them together, and watch as the desired structures spontaneously arise from the
pieces. Such systems have the potential to generate materials and both nanoscale
and macro-scale structures with desired qualities far surpassing those achievable
today.

In the early 1980’s, Ned Seeman began pioneering reserach into self-assembly
systems based on DNA molecules [10]. Later, in 1998, Erik Winfree created
an abstraction of such systems called the Tile Assembly Model [13]. The Tile
Assembly Model (TAM), an effectivization of Wang tiling [12], is based on DNA
molecules which are structured so that they behave like square tiles which have
glues on their edges that allow them to stick to tiles which have matching glues.
Such tile assemblies have actually been created in vitro, such as in [9].

Under the broad umbrella of the TAM, there are kinetic versions (kTAM)
which deal with molecular concentrations, reaction rates, and other physical
variables, and there are abstract versions (aTAM) which further abstract the
physical characteristics of the model. In this paper we will focus on versions of
the aTAM, which we will briefly outline in Section 2.

Assembled structures, or assemblies, in the aTAM start from predefined ‘seed’
structures and can grow to produce finite or infinite structures which represent
predefined shapes or represent the outputs of computations. This model has
proven to be remarkably powerful and expressive in terms of the types of assem-
blies which can be produced and the computations which can be performed, and
much research has been done to explore this potential.

As this research into the aTAM has progressed, the tile sets being consid-
ered and the assemblies studied have steadily increased in size and complexity.
Additionally, various alternatives to the original aTAM have been proposed and
investigated. This growth has resulted in the need for powerful software tools



that can aid in the development and visualization of such sophisticated systems,
as well as standardizing results for valid discussion and comparison across di-
verse approaches. For just such reasons, the Iowa State University Tile Assembly
Simulator, or ISU TAS, was developed.

ISU TAS is a freely available, open source, cross-platform software package
which provides a full development and simulation environment for the abstract
Tile Assembly Model. It provides the ability to create and edit both 2-D and 3-D
tile assembly systems in a graphical framework, and then simulate the growth
of the ensuing assemblies. Various parameters of the particular version of the
aTAM being used can be specified, and several features are provided to help in
debugging tile assembly systems.

In this paper, after sketching a definition of the aTAM, we briefly discuss a
prior simulator, Xgrow, and its abilities and limitations. We then give a more
detailed breakdown of ISU TAS and its current features and functionality, with
sections focusing on both the tile set editor and the simulator. Next, we briefly
mention some tools we also make available for algorithmically generating tile as-
sembly systems which can be simulated by ISU TAS. Finally, we mention future
direction and additional features and functionality that we hope to implement
in ISU TAS.

2 The Abstract Tile Assembly Model

This section provides a very brief overview of the most commonly used variation
of the aTAM, which is supported by ISU TAS. Where deviations which are also
supported by ISU TAS are discussed in the proceeding sections, they will be
briefly defined. See [6–8,13] for other developments of the model. Our notation
is that of [6].

We work in the discrete space Z
n, where n = 2 or 3. We write Un for the

set of all unit vectors, i.e., vectors of length 1 in Z
n. Intuitively, a tile type t

is a unit square (or cube if n = 3) that can be translated, but not rotated,
having a well-defined “side u” for each u ∈ Un. Each side u of t has a “glue” of
“color” colt(u) - a string over some fixed alphabet Σ - and “strength” strt(u)
- a natural number - specified by its type t. Two tiles t and t′ that are placed
at the points a and a + u respectively, bind with strength strt (u) if and only if
(colt (u) , strt (u)) = (colt′ (−u) , strt′ (−u)).

A tile assembly system (TAS) is an ordered triple T = (T, σ, τ), where T is a
finite set of tile types, σ is a seed assembly with finite domain, and τ ∈ N is the
temperature. An assembly is a partial function α : Z

n
99K T , and an assembly

sequence is a (possibly infinite) sequence α = (αi | 0 ≤ i < k) of assemblies
in which α0 = σ and each αi+1 is obtained from αi by the “τ -stable” addition
of a single tile. An assembly is τ -stable if it cannot be broken up into smaller
assemblies without breaking bonds whose strengths sum to at least τ .

Self-assembly begins with a seed assembly σ and proceeds asynchronously and
nondeterministically, with tiles adsorbing one at a time to the existing assembly
in any manner that preserves stability at all times. The τ-frontier, or simply



frontier, of an assembly α is the set of all positions at which a tile from T can
be “τ -stably added” to the assembly. (Note that in ISU TAS, the definition of
the term frontier is relaxed to refer to locations which have no tiles but have
tiles in adjacent locations such that the sum of their incident glue strengths is
at least τ , although there may or may not be a tile type in T which can validly
bind.) An assembly is called terminal when its frontier is empty, meaning that
no more tiles can bind.

Soloveichik and Winfree defined the notion of local determinism, which is a
powerful tool for proving the correctness of tile assembly systems, and we refer
the reader to [11] for a full definition.

3 Previous Work

The Xgrow Simulator [3] is a graphical simulator for both the aTAM and the
kTAM. It was written by the DNA and Natural Algorithms Group, headed by
Erik Winfree, at the California Institute of Technology. It is available for down-
load, along with source code, at the following URL: http://www.dna.caltech.
edu/Xgrow.

Xgrow is written in C for X Windows environment and supports a wide
range of options for controlling various parameters of the tile assembly systems
it simulates. It also allows for modification of the environment and the assembly
dynamically, while an assembly is growing. This functionality allows researchers
to better understand the interplay of the many factors that influence assembly
in the aTAM and kTAM.

However, while Xgrow is very useful for gaining high-level insights into how
tile-based self-assembly works, it doesn’t provide the ability to inspect assemblies
at the level of individual tiles, or provide tools for editing or debugging tile
assembly systems. This makes it difficult to design complex new tile assembly
systems, and was the main motivation for the creation of ISU TAS.

4 ISU TAS Overview

The Iowa State University Tile Assembly Simulator is an integrated platform
for designing, simulating, testing, and debugging tile assembly systems in the
abstract Tile Assembly Model. The software and source code are available for
download from http://www.cs.iastate.edu/~lnsa.

ISU TAS is broken into two main components, the simulator and the tile set
editor, which will each be covered in detail in proceeding sections. In this section
we provide an overview of the underlying architecture as well as describing a
subset of its features.

4.1 Code Base

ISU TAS is written in C++, and the source code is open source and freely
available. It is built upon the wxWidgets toolkit [2], which is a set of cross-
platform C++ libraries, and can be built and run on both Windows and Linux



operating systems. Build scripts are included for both platforms, and a compiled
Windows executable is available for download.

Additional third party libraries are also utilized to provide several enhanced
features. To provide 3-D rendering, ISU TAS makes use of the OpenGL [1] and
Texfont [5] libraries. RandomLib [4] is used for random number generation in
order to provide a uniform distribution.

4.2 Architecture

In the aTAM, tile assembly systems are defined by three parameters: a tile set, a
seed assembly, and a temperature value. To facilitate the building of tile assembly
systems, ISU TAS provides tools to graphically build and edit tile sets, design
seed assemblies, and set the temperature parameter. This functionality is split
between two largely disjoint components, the simulator and the tile set editor.
The simulator maintains the definition of a full tile assembly system, while the
editor maintains the definition of a separate copy of the tile set, allowing it
to be edited without invalidating any assembly currently contained within the
simulator. Therefore, whenever an edited version of the tile set is to be used
within a simulation, the existing assembly in the simulator is reset to the seed
configuration and the tile set from the editor is copied over the tile set maintained
by the simulator.

The simulator and tile set editor each have their own top level window. Each
of those have dockable sub-windows which can be toggled on and off to provide
additional information.

Tile assemblies and tile sets can be saved to and loaded from files. The
format is a very simple text file format which also allows for modification within
standard text editors or easy programmatic generation.

4.3 Supported Variations of the aTAM

ISU TAS supports several variations of the aTAM (including a few which differ
from the definition in Section 2). Some of the configurable parameters for tile
assembly systems include the following:

1. The temperature value can set to any desired positive integer.

2. At each time step of the simulation, either one frontier location can be se-
lected at random into which a fitting tile type is placed, or every frontier
which exists at the beginning of that time step can be filled in a single time
step.

3. Tiles and assemblies can be either 2-dimensional or 3-dimensional.

4. Values can be specified for the relative concentrations of tile types so that,
given frontier locations where multiple tile types can fit, a particular tile type
is selected with probability proportional to its concentration value relative
to all other fitting tile types.



5 The Tile Set Editor

In the tile set editor window, a new tile set can be created or an existing one
loaded. Figure 1 shows a screenshot of the tile set editor window. Each tile type
is graphically depicted in the ‘Tiletype editor’ window, where they can be cut,
copied, pasted, and dragged into different orderings, singly or in selected groups.
If a particular tile type is selected by left-clicking on it, it is loaded into the ‘Tile
Type Definition’ window, where every attribute of it can be edited.

Additional features of the editor include the ability to:

1. Rotate tile types
2. Search for tile types with attributes matching user-specified strings
3. Search for tile types which can bind to a particular side of a selected tile

type
4. Highlight all tiles which are being used (or unused) in the current assembly

contained in simulator

Additionally the editor automatically highlights any tile types which are
functionally equivalent (they have all of the same glues).

All modifications to the tile set in the editor are independent of the tile set
loaded into the simulator until the editor’s tile set is manually copied into the
simulator, which can be done via the ‘Tile set’ menu or a toolbar button in the
simulator window.

6 The Simulator

The simulation window of ISU TAS allows a user to create, load, and save tile
assembly systems, either as a unit or as separate components. Simulation can be
done one step at a time or in a fast-forward mode. Simulation steps are cached, so
they can also be run in reverse. The simulation engine is optimized to maximize
the speed of assembly while handling very large tile sets (testing has been done
with tile sets containing over 10, 000 unique tile types). To provide for maximum
simulation speed, the simulator can be configured to redraw the display of the
assembly only at user-specified intervals.

Seed assemblies can be created by moving the mouse cursor over the de-
sired coordinates for a seed assembly tile, then right-clicking and selecting the
appropriate tile type from the menu which appears.

6.1 Viewing the Assembly

Figure 2 shows the simulation window during the simulation of a two-dimensional
tile assembly. The ‘Simulation space’ window shows a portion of the current
assembly and allows for arbitrary zoom factors and panning across the entire
assembly for high level viewing of the assembly or for tile by tile inspection. It
shows the tiles in the assembly as well as highlighting frontier locations with
blue squares. The ‘Overview’ window (seen near the bottom left of Figure 2)



Fig. 1: Tile set editor window

shows a small version of the entire assembly with a box drawn around the area
that is currently viewable in the ‘Simulation space’ window. Clicking within the
‘Overview’ window causes the ‘Simulation space’ window to automatically scroll
so that the clicked location of the assembly is centered.

When the mouse cursor is moved over the assembly, the ‘Tile type’ window
shows the contents of the location currently under the cursor, allowing tile types
to be clearly seen without requiring large zoom factors. Besides the attributes of
the tile type, the time step in which a tile was added to that particular location
is also displayed, along with its coordinates.

6.2 Debugging Features

Due to the immense complexity of many tile assembly systems being researched,
there is a great need for extensive debugging features that can be used during
their development. Some of those provided by ISU TAS are listed below.



Fig. 2: Simulation window

1. Breakpoints can be set to stop fast-forward simulation based on any of the
three user-specified criteria:

(a) A specified number of simulation steps have occurred

(b) A tile is placed in a specified location

(c) A tile of a specified type is placed in any location

2. The seed used for random number generation can be retrieved, manually set,
or automatically generated, and every time an assembly is reset it is possible
to specify what seed is used in order to provide reproducible results when
debugging issues that arise due to the nondeterminism inherent in the TAM.

3. Locations which have incident glue strengths equal to or greater than τ are
drawn as blue squares since they are eligible frontier locations, and any such
locations at which a tile addition has been attempted but no possible fitting
tile type was found are drawn as red squares and referred to as ‘dead’ frontier
locations.

4. A box-drawing tool can be used which allows frontier locations to be selected
and toggled ‘on’ or ‘off’ in order to restrict assembly growth to particular
locations.



5. An option can be turned on which causes the simulator to report every
instance in which a tile was added to a location in which more than one tile
type could have validly been placed (a type of non-determinism).

6. An option can be turned on which causes the simulator to report every
instance in which a tile was added to a location in which it bound with
strength greater than τ , which is a violation of the first condition of local
determinism (Soloveichik and Winfree [11]).

6.3 3-D Simulation

Figure 3 shows the simulation window when the simulator is in 3-D mode. The
differences in 3-D simulation from 2-D mostly concern the visualization. In 3-D
mode, the mouse is used to rotate the assembly and view it from different angles.
One additional window, the ‘Axes’ window, displays the current orientation of
the three positive axes, while another, the ‘Space Configuration’ window, allows
user-defined regions (or ‘slices’) of the assembly to be the only visible portions.
This allows for inspection of arbitrary pieces of the assembly, even if they are
interior and would otherwise be blocked from view by other portions of the
assembly. Frontier locations are displayed as semi-transparent cubes. Finally,
the ‘Tile Type’ window now shows an ‘unwrapped’ three-dimensional tile so
that all sides can be simultaneously viewed.

7 Additional Tools

In addition to ISU TAS, we also make several programs for algorithmically gen-
erating tile assembly systems used by ISU TAS, and their source code, available.
They are written in standard C++ with no requirements on third party libraries
and include a basic library, TileLib, which can be used to easily create new ap-
plications. Tools for generating tile sets which act as counters, Turing machine
simulations, and other constructions related to several of our results can all be
downloaded.

8 Future Work

While ISU TAS has come a long way toward becoming a solid and robust en-
vironment for designing and testing tile assembly systems, there remain many
features on our list to implement in the future.

Many more optimizations for 3-D simulation are required to support large
assemblies. Partial support for temperature programming has been implemented,
but an efficient way to calculate the fragments of assemblies which should ‘melt’
off at temperature increases is needed. Building and testing of ISU TAS needs
to be performed on Mac OSX in order to add that as a supported platform. We
also wish to add support for versions of the kTAM.

With increased interest in, and usage of, ISU TAS we hope to receive useful
feedback and testing that can enable us continue to provide tools that help



Fig. 3: Simulation window (3-D mode)

further research in tile-based self-assembly and aid in moving this theoretical
research closer to a physical reality.

Acknowledgments We thank Scott Summers and Dave Doty for valuable test-
ing, feature requests, and feedback, as well as tremendous patience during pro-
longed development and debugging cycles.

References

1. OpenGL,
http://www.opengl.org (accessed January 2009).

2. wxWidgets Cross-Platform GUI Library,
http://www.wxwidgets.org (accessed January 2009).

3. DNA and Natural Algorithms Group, Xgrow simulator,
http://www.dna.caltech.edu/Xgrow (accessed January 2009).

4. Charles Karney, RandomLib,
http://charles.karney.info/random (accessed January 2009).



5. Mark Kilgard, Texfont,
http://www.opengl.org/resources/code/samples/glut examples/texfont/texfont.html
(accessed January 2009).

6. James I. Lathrop, Jack H. Lutz, and Scott M. Summers, Strict self-assembly of
discrete Sierpinski triangles, Theoretical Computer Science 410 (2009), 384–405.

7. Paul W. K. Rothemund, Theory and experiments in algorithmic self-assembly,
Ph.D. thesis, University of Southern California, December 2001.

8. Paul W. K. Rothemund and Erik Winfree, The program-size complexity of self-
assembled squares (extended abstract)., STOC, 2000, pp. 459–468.

9. Paul W.K. Rothemund, Nick Papadakis, and Erik Winfree, Algorithmic self-
assembly of dna sierpinski triangles, PLoS Biology 2 (2004), no. 12.

10. N.C. Seeman, Nucleic-acid junctions and lattices, Journal of Theoretical Biology
99 (1982), 237–247.

11. David Soloveichik and Erik Winfree, Complexity of self-assembled shapes, SIAM
Journal on Computing 36, 2007, pp. 1544–1569.

12. Hao Wang, Proving theorems by pattern recognition – II, The Bell System Technical
Journal XL (1961), no. 1, 1–41.

13. Erik Winfree, Algorithmic self-assembly of DNA, Ph.D. thesis, California Institute
of Technology, June 1998.


