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Abstract

This paper explores the impact of geometry on computability and complexity in Winfree’s model
of nanoscale self-assembly. We work in the two-dimensional tile assembly model, i.e., in the discrete
Euclidean plane Z × Z. Our first main theorem says that there is a roughly quadratic function f such
that a set A ⊆ Z

+ is computably enumerable if and only if the set XA = {(f(n), 0) | n ∈ A} – a simple
representation of A as a set of points on the x-axis – self-assembles in Winfree’s sense. In contrast, our
second main theorem says that there are decidable sets D ⊆ Z×Z that do not self-assemble in Winfree’s
sense.

Our first main theorem is established by an explicit translation of an arbitrary Turing machine M to
a modular tile assembly system TM , together with a proof that TM carries out concurrent simulations of
M on all positive integer inputs.

1 Introduction

A major objective of nanotechnology is to engineer systems that, like many systems in nature, autonomously
assemble themselves from molecular components. One promising approach to this objective, pioneered by
Seeman in the 1980s [11], is DNA tile self-assembly. This approach exploits the information-processing and
structural properties of DNA to construct nanoscale components (DNA tiles) that, with moderate control of
physical conditions (temperature, concentration in solution, etc.), spontaneously assemble themselves into
larger structures. These structures, which may be complex and aperiodic, are programmed, in the sense that
they are determined by a designer’s selection of the short, single-strand nucleotide sequences (“sticky ends”)
that appear on each side of each type of DNA tile to be used.

In the late 1990s, Winfree [15] introduced a mathematical model of DNA tile assembly called the Tile
Assembly Mode. This model, which was soon refined by Rothemund and Winfree [10, 9], is an extension
of Wang tiling [13, 14]. (see also [1, 8, 12].) The Tile Assembly Model, which is described in section 2
below, uses square tiles with various types and strengths of “glue” on their edges as abstractions of DNA
tiles adsorbing to a growing structure on a very flat surface such as mica. Winfree [15] proved that the Tile
Assembly Model is computationally universal, i.e., that any Turing machine can be encoded into a finite set
of tile types whose self-assembly simulates that Turing machine.

The computational universality of the Tile Assembly Model implies that self-assembly can be algorith-
mically directed, and hence that a very rich set of structures can be formed by self-assembly. However, as
we shall see, this computational universality does not seem to imply a simple characterization of the class
of structures that can be formed by self-assembly. The difficulty is that self-assembly (like sensor networks,
smart materials, and other topics of current research [2, 3]) is a phenomenon in which the spatial aspect of
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computing plays a crucial role. Two processes, namely self-assembly and the computation that directs it,
must take place in the same space and time.

In this paper, we focus on the self-assembly that takes place in the discrete Euclidean plane Z
2 = Z×Z,

where Z is the set of integers. Roughly, a tile assembly system T (defined precisely in section 2) is a finite
set T of tile types, together with a finite seed assembly σ consisting of one or more tiles of these types. Self-
assembly is then the process in which tiles of the types in T successively adsorb to σ (more precisely, to the
assembly which is thereby dynamically growing from σ) in any manner consistent with the rules governing
the glue types on the edges of the given tile types. Note that self-assembly is, in general, a nondeterministic,
asynchronous process.

We say that a set X ⊆ Z
2 self-assembles in a tile assembly system T if every possible “run” of self-

assembly in T results in the placement of black tiles on the set X and only on the set X . (Some of the tile
types in T are designated to be black. Non-black tiles may appear on some or all points in the complement
Z

2−X .) This is the sense in which Winfree [15] has demonstrated the self-assembly of the standard discrete
Sierpinski triangle. (In [7] this is called weak self-assembly to contrast it with a stricter notion in which,
essentially, all tiles are required to be black.)

This paper presents two main theorems on the interplay between geometry and computation in tile
self-assembly. To explain our first main theorem, define the function f : Z

+ → Z
+ by

f(n) =

(

n + 1

2

)

+ (n + 1)⌊log n⌋ + 6n − 21+⌊log(n)⌋ + 2.

Note that f is a reasonably simple, strictly increasing, roughly quadratic function of n. For each set A ⊆ Z
+,

the set
XA = {(f(n), 0)|n ∈ A}

is thus a straightforward representation of A as a set of points on the positive x-axis.
Our first main theorem says that every computably enumerable set A of positive integers (decidable or

otherwise) self-assembles in the sense that there is a tile assembly system TA in which the representation XA

self-assembles. Conversely, the existence of such a tile assembly system implies the computable enumerability
of A.

In contrast, our second main theorem says that there are decidable sets D ⊆ Z
2 that do not self-assemble

in any tile assembly system. In fact, we exhibit such a set D for which the condition (m, n) ∈ D is decidable
in time polynomial in |m| + |n|.

Taken together, our two main theorems indicate that the interaction between geometry and computation
in self-assembly is not at all simple. Further investigation of this interaction will improve our understanding
of tile self-assembly and, more generally, spatial computation.

The proof of our first main theorem has two features that may be useful in future investigations. First,
we give an explicit transformation (essentially a compiler, implemented in C++) of an arbitrary Turing
machine M to a tile assembly system TM whose self-assembly carries out concurrent simulations of M on
(the binary representation of) all positive integer inputs. Second, we prove two lemmas – a pseudoseed
lemma and a multiseed lemma – that enable us to reason about tile assembly systems in a modular fashion.
This modularity, together with the local determinism method of Soloveichik and Winfree [12], enables us to
prove the correctness of TM .

Images are in black and white in the print version of this paper and in color in the online version.

2 Preliminaries

We work in the 2-dimensional discrete Euclidean space Z
2. We write U2 for the set of all unit vectors, i.e.,

vectors of length 1, in Z
2. We regard the 4 elements of U2 as (names of the cardinal) directions in Z

2.
We now give a brief and intuitive sketch of the Tile Assembly Model that is adequate for reading this

paper. More formal details and discussion may be found in [15, 10, 9, 7]. Our notation is that of [7].
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Intuitively, a tile type t is a unit square that can be translated, but not rotated, so it has a well-defined
“side ~u” for each ~u ∈ U2. Each side ~u is covered with a “glue” of “color” colt(~u) and “strength” strt(~u)
specified by its type t. If two tiles are placed with their centers at adjacent points ~m, ~m + ~u ∈ Z

2, where
~u ∈ U2, and if their abutting sides have glues that match in both color and strength, then they form a bond
with this common strength. If the glues do not so match, then no bond is formed between these tiles. In
this paper, all glues have strength 0, 1, or 2. When drawing a tile as a square, each side’s glue strength is
indicated by whether the side is a dotted line (0), a solid line (1), or a double line (2). Each side’s “color”
is indicated by an alphanumeric label.

Given a set T of tile types and a “temperature” τ ∈ N, a τ-T-assembly is a partial function α : Z
2 99K T

- intuitively, a placement of tiles at some locations in Z
2 - that is τ -stable in the sense that it cannot be

“broken” into smaller assemblies without breaking bonds of total strength at least τ . For each t ∈ T , we
write ∂tα for the set of all locations to which a tile of type t can be τ -stably added. We write ∂α for the set
of all locations to which some tile can be τ -stably added to α. We refer to ∂α as the frontier of α. If α and
α′ are assemblies, then α is a subassembly of α′, and we write α ⊑ α′, if dom α ⊆ dom α′ and α(~m) = α′(~m)
for all ~m ∈ dom α.

Self-assembly begins with a seed assembly σ and proceeds asynchronously and nondeterministically, with
tiles adsorbing one at a time to the existing assembly in any manner that preserves τ -stability at all times. A
tile assembly system (TAS) is an ordered triple T = (T, σ, τ), where T is a finite set of tile types, σ is a seed
assembly with finite domain, and τ ∈ N. In this paper we always have τ = 2. A generalized tile assembly
system (GTAS) is defined similarly, but without the finiteness requirements. We write A [T ] for the set of
all assemblies that can arise (in finitely many steps or in the limit) from T . An assembly α is terminal, and
we write α ∈ A� [T ], if no tile can be τ -stably added to it.

An assembly sequence in a TAS T is a (finite or infinite) sequence ~α = (α0, α1, . . .) of assemblies in which
each αi+1 is obtained from αi by the addition of a single tile. The result res(~α) of such an assembly sequence
is its unique limiting assembly (This is the last assembly in the sequence if the sequence is finite). The set
A [T ] is partially ordered by the relation −→ defined by

α −→ α′ iff there is an assembly

sequence ~α = (α0, α1, . . .)

such that α0 = α and

α′ = res(~α).

We say that T is directed if the relation −→ is directed, i.e., if for all α, α′ ∈ A [T ], there exists α′′ ∈ A [T ]
such that α −→ α′′ and α′ −→ α′′. It is easy to show that T is directed if and only if there is a unique
terminal assembly α ∈ A [T ] such that σ −→ α.

In general, even a directed TAS may have a very large (perhaps uncountably infinite) number of different
assembly sequences leading to its terminal assembly. This seems to make it very difficult to prove that a TAS
is directed. Fortunately, Soloveichik and Winfree [12] have recently defined a property, local determinism,
of assembly sequences and proven the remarkable fact that, if a TAS T has any assembly sequence that is
locally deterministic, then T is directed.

A set X ⊆ Z
2 (weakly) self-assembles if there exist a TAS T = (T, σ, τ) and a set B ⊆ T such that

α−1(B) = X holds for every terminal assembly α ∈ A� [T ].

3 Pseudoseeds and Multiseeds

This section introduces two conceptual tools that enable us to reason about tile assembly systems in a
modular fashion.

The idea of our first tool is intuitive. Suppose that our objective is to design a tile assembly system T
in which a given set X ⊆ Z

2 self-assembles. The set X might have a subset X∗ for which it is natural to
decompose the design into the following two stages.
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(i) Design a TAS T0 = (T0, σ, τ) in which an assembly σ∗ with domain X∗ self-assembles.

(ii) Extend T0 to a tile set T such that X self-assembles in the TAS T ∗ = (T, σ∗, τ)

We would then like to conclude that X self-assembles in the TAS T = (T, σ, τ). This will not hold in general,
but it does hold if (i) continues to hold with T in place of T0 and σ∗ is a pseudoseed in the following sense.

Definition. Let T = (T, σ, τ) be a GTAS. A pseudoseed of T is an assembly σ∗ ∈ A[T ] with the property
that, if we let T ∗ = (T, σ∗, τ), then, for every assembly α ∈ A[T ], there exists an assembly α′ ∈ A[T ∗] such
that α ⊑ α′.

The following lemma says that the above definition has the desired effect.

Lemma 3.1 (pseudoseed lemma). If σ∗ is a pseudoseed of a GTAS T = (T, σ, τ) and T ∗ = (T, σ∗, τ), then
A� [T ] = A� [T ∗].

Proof. (“⊆” direction) Let α ∈ A� [T ]. This means that σ → α. The definition of pseudoseed tells us that
there exists α′ ∈ A [T ∗] such that α ⊑ α′. But since α is terminal, we must have α = α′, whence σ ⊑ σ∗ ⊑ α.
It follows, by Rothemund’s lemma (Lemma 2 on p. 57 of [9]), that σ∗ → α.

(“⊇” direction) Let α ∈ A� [T ∗]. Then we have σ∗ → α. Moreover, σ → σ∗ because σ∗ ∈ A [T ]. Thus,
σ → σ∗ → α, and it follows, by the transitivity of →, that α ∈ A� [T ].

Note that the pseudoseed lemma entitles us to reason as though the self-assembly proceeds in stages,
even though this may not actually occur. (E.g., the pseudoseed σ∗ may itself be infinite, in which case the
self-assembly of σ∗ and the self-assembly from σ∗ must occur concurrently.)

Our second tool for modular reasoning is a bit more involved. Suppose that we have a tile set T and list
σ0, σ1, σ2, . . . of seeds that, for each i, the TAS Ti = (T, σi, τ) has a desired assembly αi as its result. If the
assemblies α0, α1, α2, . . . have disjoint domains, then it might be possible for all these assemblies to grow
from a “multiseed” σ∗ that has σ0, σ1, σ2, . . . embedded in it. We now define a sufficient condition for this.

Definition. Let T and T ′ be sets of tile types with T ⊆ T ′, and let ~σ = (σi | 0 ≤ i < k) be a sequence of
τ -T -assemblies, where k ∈ Z

+ ∪ {∞}. A ~σ-T -T ′-multiseed is a τ -T ′ assembly σ∗ with the property that, if
we write

T ∗ = (T ′, σ∗, τ)

and
Ti = (T, σi, τ)

for each 0 ≤ i < k, then the following four conditions hold.

1. For each i, σi ⊑ σ∗.

2. For each i 6= j, α ∈ A [Ti], α′ ∈ A [Tj ], ~m ∈ dom α, and ~m′ ∈ dom α′, ~m − ~m′ ∈ U2 ∪ {~′} ⇒

~m, ~m′ ∈ dom σ∗. (Recall that U2 is the set of unit vectors in Z2.)

3. For each i, and each α ∈ A [Ti], there exists α∗ ∈ A [T ∗] such that α ⊑ α∗.

4. For each α∗ ∈ A [T ∗], there exists, for each 0 ≤ i < k, αi ∈ A [Ti] such that α∗ ⊑ σ∗ +
∑

0≤i<k αi.

5. For each α ∈ A [T ∗], α−1 (T ′ − T ) ⊆ dom σ∗.

Note: In condition 4 we are using the operation + defined as follows. If α, α′ : Z
2 99K T are consistent, in

the sense that they agree on dom α∩dom α′, then α+α′ : Z
2 99K T is the unique partial function satisfying

dom (α + α′) = dom α ∪ dom α′, α ⊑ α + α′, and α′ ⊑ α + α′. This is extended to summations
∑

0≤i<k αi

in the obvious way. The assemblies being summed in condition 4 are consistent by conditions 1 and 2.
Intuitively, the four conditions in the above definition can be stated as follows.
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1. The seeds σi are embedded in σ∗.

2. Assemblies in A [Ti] and assemblies in A [Tj ] do not interfere with each other.

3. σ∗ does not interfere with assemblies in A [Ti].

4. σ∗ does not produce anything other than what its embedded seeds σi produce.

5. Tile types in T ′ − T cannot occur outside σ∗.

The following lemma says that the multiseed definition has the desired effect.

Lemma 3.2 (multiseed lemma). Let T ⊆ T ′ be sets of tile types, and let ~σ = (σi | 0 ≤ i < k) be a sequence
of τ -T -assemblies, where k ∈ Z

+ ∪ {∞}. If σ∗ is a ~σ-T -T ′-multiseed of T ∗ and Ti (0 ≤ i < k) are defined
as in the multiseed definition, then

A� [T ∗] =







σ∗ +
∑

0≤i<k

αi

∣

∣

∣

∣

∣

∣

each αi ∈ A� [Ti]







.

Proof. (“⊆” direction) Let α∗ ∈ A [T ∗]. It follows by part (4) of definition 3 that α∗ = σ∗+
∑

0≤i<k αi, where

αi ∈ A [Ti], Since α∗ is terminal, for each i, αi ∈ A� [Ti], whence α∗ ∈
{

σ∗ +
∑

0≤i<k αi

∣

∣

∣
each αi ∈ A� [Ti]

}

.

(“⊇” direction) For each 0 ≤ i < k, let αi ∈ A� [Ti] and let α = σ∗ +
∑

0≤i<k αi . It suffices to shaw
that α ∈ A� [T ∗].

Condition 3 of the multiseed definition tells us that, for each 0 ≤ i < k, there is an assembly α∗
i ∈ A [T ∗]

such that αi ⊑ α∗
i . Since σ∗ ⊑ α∗

i , it follows that

σ∗ + αi ⊑ α∗
i .

By condition 4 of the multiseed definition, there is, for each 0 ≤ i < k and 0 ≤ j < k, an assembly αij ∈ A [Ti]
such that, for all 0 ≤ i < k,

α∗
i ⊑ σ∗ +

∑

0≤j<k

αij .

For each 0 ≤ i < k, let
Di = dom α∗

i ∩ (dom σ∗ ∪ dom αii),

and let
α̂∗

i = α∗
i ↾ Di.

By (1), (2), and condition 2 of the multiseed definition, we have

σ∗ + αi ⊑ α̂∗
i

for all 0 ≤ i < k. Now the assemblies α̂∗
i are all consistent with one another, and each αi is terminal in

A [Ti], so, by condition 5 of the multiseed definition, we must have

α =
∑

0≤i<k

α̂∗
i .

For each 0 ≤ i < k, let ~α∗i be an assembly sequence from σ∗ to α∗
i , and let ~̂α∗i be the sequence obtained from

~α∗i by deleting all additions of tiles not in σ∗ + αii. By condition 2 of the multiseed definition, each ~̂α∗i is a
τ -T’-assembly sequence from σ∗ to α̂∗

i . By (3), then, if we dovetail the assembly sequences ~̂α∗i(0 ≤ i < k),

we get an assembly sequence ~̂α∗ from σ∗ to α, whence α ∈ A [T ∗]. Since the αi are terminal, conditions 4
and 5 of the multiseed definition tell us that α ∈ A� [T ∗].
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4 Self-Assembly of Computably Enumerable Sets

In [15], Winfree proved that the Tile Assembly Model is Turing universal in two dimensions. In this section,
we prove a stronger result: for every TM M , there exists a directed TAS that simulates M on (the binary
representation of) every input x ∈ N in the two dimensional discrete Euclidean plane. We state our result
precisely in the following theorem.

Theorem 4.1 (first main theorem). If f : Z
+ → Z

+ is defined as in section 1, then, for all A ⊆ Z
+, A is

computably enumerable if and only if the set XA = {(f(n), 0) | n ∈ A} self-assembles.

“⇐” direction. Let f be as defined in the introduction, and assume the hypothesis. Then there exists a
2-TAS T = (T, σ, τ) in which the set XA self-assembles. Let B be the set of “black” tile types given by
the definition of self-assembly. Fix some enumeration ~a1,~a2,~a3 . . . of Z

2, and let M be the TM, defined as
follows.

Require: n ∈ N

α := σ

while (f(n), 0) 6∈ dom α do

choose the least j ∈ N such that ~aj ∈ ∂ταi

choose t ∈ T such that ~aj ∈ ∂τ
t αi

α := α + (~aj 7→ t)
end while

if α ((f(n), 0)) ∈ B then

accept
else

reject
end if

It is clear from above that L(M) = A, whence A is computably enumerable.

To prove the “⇒” direction, we exhibit, for any TM M , a directed TAS TM = (T, σ, τ) that correctly
simulates M on all inputs x ∈ Z

+ in the two dimensional discrete Euclidean plane. We describe our
construction, and give the complete specification for T in the remainder of this section.

4.1 Overview of Construction

Intuitively, TM self-assembles a “gradually thickening bar”, immediately below the positive x-axis with
upward growths emanating from well-defined intervals of points. For each x ∈ Z

+, there is an upward
growth that simulates M on x. If M halts on x, then (a portion of) the upward growth associated with the
simulation of M(x) eventually stops, and sends a signal down along the right side of the upward growth via
a one-tile-wide-path of tiles to the point (f(x), 0), where a black tile is placed. See Figure 1 for a finite, yet
intuitive snapshot of this infinite process.

Our tile assembly system TM is divided into three modules: the ray, the planter, and the TM module,
which control the spacing between successive simulations, the initiation of upward growth, and the actual
simulations of M on each positive integer, respectively.

4.2 Overview Of The Ray Module

The first module in our construction is the ray module (middle shade of gray squares in Figure 1). For any
3 ≤ w ∈ Z

+, a ray of width w is a fixed-width, periodic, binary counter that repeatedly counts from 0 to
2w − 1, such that each integer is counted once, and then immediately copied once before the value of the
binary counter is incremented. Essentially, a ray of width w is a discrete line of constant thickness w, having
a kind of “slope” that depends on w in the following way. In every other row (except for two special cases),
the first tile to attach does so on top of the second-to-leftmost tile in the previous row. Thus, a ray of width
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Figure 1: Simulation of M on every input x ∈ N. Notice that M(2) halts - indicated by the black tile along
the x-axis.

w will have a slope of 2w

2w−1−1 = 2+ 2
2w−1−1 . This implies that the set of points occupied by properly spaced,

consecutive rays of strictly increasing width, will not only be disjoint but the width of the gap in between
such rays will increase without limit.

4.3 Details Of Construction Of The Ray Module

(It is to be understood that, although not explicit in our discussion, tile types in each module are colored
with a “module indicator” symbol to prevent erroneous binding between the tile types of different modules.)

The ray module is a tile set of 68 tile types. Although in our construction the ray is not a self-contained
tile assembly system, it can be made to be one with a trivial change. For any 3 ≤ w ∈ N, a ray of width w

is a fixed-width, periodic, binary counter that repeatedly counts from 0 to 2w − 1, such that each integer is
counted once, and then immediately copied once before the value of the binary counter is incremented. Our
ray is based on the binary counter from [10], and thus increments right-to-left, and then copies the previous
value left-to-right. However, since we construct the ray to operate on the reverse of each integer (i.e., the
LSB of each integer is its left most bit), increments proceed left-to-right and copies right-to-left. The most
important feature of the ray is that the first, and hence leftmost, tile to attach in any increment row does
so on top of the second-to-leftmost tile in the previous copy row, unless the bit pattern of the previous
increment row is of the form 1w−1(0 + 1). A detailed example of the former case is shown in Figure 2.

In the latter case, the ray simply proceeds without “shifting” to the right by one unit. Copy rows are
able to search for the two special bit patterns by using ‘a’ and ‘s’ signals, respectively. For instance, when
a copy row begins to self-assemble, and the current value of the counter is less than 2w−1, an ‘a’ signal
is propagated left through the copy row until a 0 bit is encountered in the previous increment row, thus
breaking the signal. If no such bit exists, the signal will reach the leftmost tile of the copy row, and cause
the next increment row to attach without being shifted one unit to the right. This situation is shown with
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*0

*1

0

0

00*

00*

00*0*1**1

*r r r r*

**1

**0

*1

*0

0

1

00*

00*

00*0*1

*0 0 00*

*1n

*0c

0n

1n

00n

00n

*1n

*0c

0n

1n

00n

00n

O

O

Y

R

1

0

0

1

0

0

0

0

0001

S S S S

Figure 2: The first row of tiles is the initial row in a ray of width 4. The second row of tiles represents
the value 1, and is the first increment row. The third row of tiles simply copies the value of the previous
increment row.

detail in Figure 3.
Otherwise, the next increment row attaches on top of the second-to-leftmost tile in the current copy row.

The ‘s’ signal searches for the bit pattern 1w in a similar fashion, shown with detail in Figure 4.
Finally, each row in the ray exhibits a particular “color” on the right side of its rightmost tile so as to

allow a third (soon to be discussed) module to “know what to do and when to do it.” Each increment row
signals orange unless it contains the bit pattern 0w−1(0 + 1), in which case it signals green for 0w−11, and
indigo otherwise. Each copy row signals yellow. However, if it is the copy row after an increment row with
the bit pattern 0w−11, then it signals blue. The initial row signals red.

In our construction, the upward growth of every ray is initiated by the planter. This can be seen with
detail in Figure 5, where the top row of tiles (excluding the leftmost tile) will initiate the self-assembly of a
ray having a width of 6. It is clear that our construction has the following properties.

1. A ray having a width of w will have a “slope” of 2w

2w−1−1 = 2 + 2
2w−1−1 , which clearly tends to 2 as

w → ∞;

2. for every 3 ≤ w ∈ Z
+, there is one and only one ray having a width of w;

3. thinner rays appear before thicker rays;

4. the set of points occupied by any ray is disjoint from the set of points occupied by any other ray and

5. the width between successive rays grows without limit.

The following is a list of tile types that make up the ray module.

1. Initial row - add the following tile types:

Leftmost Second leftmost Interior Rightmost

*r

rS

r

*0

r S

r

0

S

r*

00*

RS
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*0

*a

1

0

1

10*

01*

1 10*

*10

10*

01*b

1

1

0

*0

*1

*0

**0

**1

**0

**1

**1

**0

*1

*1

*0

1

0

0

10*

01*

01*b

10*

10*

01*

1

1

0

*0

1

*0

*a

*1n

*1n

b

1n

0n

b

10n

01n

b

a

a

a

aa

*1n

*1n

b

1n

0n

b

10n

01n

b

O

O

G

Y

Y

B

a

a

a

aa

1

1

0

1

0

0

1

0

0

0

1

1

0

0

1

1

1

0

1

1

0

0

1

0

Figure 3: If the current value of the binary counter is a power of 2 (the fourth row of tiles), then the increment
row that represents this value does not shift to the right by one unit. This situation is detected in the third
(copy) row by the ‘a’ signal, which travels unimpeded right-to-left. The complementary ‘b’ signal is then
sent left-to-right in the subsequent increment row to initiate a green signal.

2. Tile types that perform general case increments (left to right).

(a) Leftmost tile - add the following tile types:

No carry Carry

*0

**1

*1n

*1

**0

*0c

(b) Second leftmost tile type.

i. If there is no carry bit to propagate, then for all x, y ∈ {0, 1}, add the following tile types:

No carry in
No carry out

y

*x

*xn yny

ii. If there is a carry bit coming in from the left, add the following tile types:
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*0

*0

*s

1

0

1

11*

00*

1 11*

*11

11*

00*b

1

1

0

*0

*1

*0

**0

**1

**0

**1

**1

**0

*1

*0

*0

1

0

0

11*

00*

00*

11*

11*

00*

1

1

0

*0

1

*0

*s

*1n

*1n

t

1n

0n

t

11n

00n

t

s

s

s

ss

*1n

*1n

t

1n

0n

t

11n

00n

t

O

O

I

Y

Y

Y

s

s

s

ss

1

1

0

1

0

0

1

0

0

1

0

0

1

1

0

1

1

0

1

1

0

0

1

0

Figure 4: If the current value of the binary counter rolls over to all zeros (the fourth row of tiles), then the
increment row that represents this value does not shift to the right by one unit. Similar to how the ‘a’ signal
detects powers of 2, the ’s’ signal (the third row of tiles) detects when the counter is about to roll over. The
‘t’ signal initiates an indigo signal.

Carry in, Carry in,
No carry out Carry out

0

*0

*0c 1n1

1

*0

*0c 0c0

(c) Interior tile type.

i. If there is no carry bit to propagate, then for all x, y ∈ {0, 1}, add the following tile types:

No carry in
No carry out

y

x

xn yny

ii. If there is a carry bit coming in from the left, add the following tile types:

Carry in, Carry in,
No carry out Carry out

0

0

0c 1n1

1

0

0c 0c0
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(d) Second rightmost tile type.

i. If there is no carry bit to propagate, then for all x, y, z ∈ {0, 1}, add the following tile types:

No carry in
No carry out

yz*

x

xn yzny

ii. If the carry bit being propagated stops at the second most significant bit, then for all x ∈
{0, 1}, add the following tile types:

Carry in
No carry out

0x*

0

0c 1 nx1

(e) Rightmost tile type - for all x, y ∈ {0, 1}, add the following tile type:

No carry in

xy*

xyn Oy

(f) Second right and second leftmost tile type (when w = 3.)

i. If there is no carry bit to propagate, then for all x, y ∈ {0, 1}, add the following tile types:

No carry in,
No carry out

xy*

*1

*1n xynx

ii. If the carry bit stops at this location, then for all x ∈ {0, 1}, add the following tile types:

Carry in,
No carry out

0 *x

*0

*0c 1 nx1

3. Tile types that perform special case increments.

(a) When the current row represents a power of 2 - add the following tile types:

Leftmost Second leftmost Interior Rightmost

*a

**0

*b0

1

*0

*b b0

1

0

b b0

10*

01*b

b G1

(b) When the current row represents 0 - add the following tile types:
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Leftmost Second leftmost Interior Rightmost

*s

**0

*t0

1

*0

*t t0

1

0

t t0

11*

00*

t I0

4. Tile types that copy the current value of the counter (right to left).

(a) Rightmost tile type of copy row.

i. Rightmost tile types that initiate a generic copy row - for all y ∈ {0, 1}, add the following tile
types:

Search for bit Copy row above
pattern: (0 + 1)+0(0 + 1) bit pattern: 00+1

0 *y

0 *y

Yy

0 b*y

0 *y

By

ii. Rightmost tile types that search for a particular bit pattern - add the following tile types:

Search for bit Search for bit
pattern: 11+0 pattern: 11+

10*

10*

a Y0

11*

11*

s Y1

(b) Copy row interior tile types - for all x ∈ {0, 1}, add the following tile types:

Leftmost Second leftmost Interior

**x

x
*x

*x

x

x

x

x

(c) Copy row tile types that perform bit pattern search - for all z ∈ {a, s} add the following tile types:

Leftmost Second leftmost Interior

**1

*z

z1

*1

1

z z1

1

1

z z1

(d) Tile types that terminate bit pattern search - for all z ∈ {a, s} add the following tile types:

Second leftmost Interior

*0

*0

z0

0

0

z0

4.4 Overview Of The Planter Module

The next module is the planter module because it “plants the seeds” from which the ray modules will
ultimately grow (the darkest gray squares in Figure 1). At the core of the planter module is a log-width,
horizontal binary counter that counts every positive integer, starting at 1, in order. A key feature of the
binary counter embedded in the planter module is that, after each integer is counted, a number of columns,
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equal to the current value of the binary counter, plus the number of bits in the binary representation of
this value, plus a few extra “dummy” spacing columns, self-assemble. This has the effect of spacing out
successive ray modules according to the function f (given in the introduction).

4.5 Details Of Construction Of The Planter Module

The tile set for the planter consists of 94 tile types. We partition the tile types into four logical subgroups.
The first of the four subgroups is a standard binary counter that counts from 1 to infinity with the LSB

of each integer having a y-coordinate of -1. The binary counter is based on an infinite fixed-width version of
the binary counter in [10].

Suppose that x ∈ Z
+ be the current value of the binary counter. The second subgroup receives x as

input, and then in each subsequent row, subtracts one from the value of the number in the previous row
until reaching 0, at which time a final “dummy” row consisting of all zeros self-assembles. This results in
the self-assembly of exactly x + 1 rows following the binary counter row that represents x. The tile types
that perform subtraction are based on the optimal binary counter (see [4]). Note that while subtraction is
taking place, the current value of the binary counter is “remembered” via the rightmost bits in the east/west
edge labels so that the value can be input to the third subgroup. Figure 5 shows a detailed example of the
subtraction process for n = 4.

c s s

cc t s

t t

c

*r

t

r r

tc t s

r*

sc c

r r

s

c

*1

1*1

*10 *10

0*a

101* 00 00 00

*00

0*10*1 0*1

*00 *00

10

*1 *00

0*1

*00 *00

0*b

0000 10 00 00

*00

0*a0*1 0*1

*10 *10

10

1*1

1*

0

0

0 0

0

00 1 0 0

0

00 0

1 1

1

1

Figure 5: Subtraction in the planter. The first column of tiles represents the current value of the binary
counter (4). The five rightmost columns of tiles perform subtraction.

Next, the third subgroup of tile types self-assembles into a square of size ⌊lg x⌋+1 such that its north most
edge labels are colored with the bits of x. The tile representing the LSB of x is the one that is placed in the
upper right corner of the square. Notice that this has the affect of rotating and reflecting x up immediately
below the x-axis. This is shown with detail in Figure 6. Notice that the rightmost tiles in Figure 5 bind
with the leftmost tiles in Figure 6.

Finally, the fourth subgroup self-assembles three inert “dummy” spacing rows while allowing the current
value of the binary counter to pass through. After these spacing rows attach, the next row of the binary
counter self-assembles in which 1 is added to x. This process is repeated for all x ∈ Z

+.
The following is the set of tile types that make up the planter module.

1. Seed tile types.

Top of Bottom of
The seed first column first column

S

*r

*111 0*00
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n

n

#0

#1i

1i

*r

n

#1i

#0

0 0 *

#1i

1+

n

*0

0

0*b

#0

*0 #*0 *0a *0b *0c

1*

0 0 0 0

1* 1* 1* 1*

00

*00

1*

*11

00

1*

0

#*0 *0a *0b *0c *0

1*

0 0 0 0

1* 1* 1* 1*

#0

*0

1*1

1

0

0 01

1

Figure 6: Rotation in the planter. The first three columns of tiles rotates and reflects the input (4) up
immediately below the x-axis. The three subsequent columns of tiles are “dummy” spacing columns, and
the final column of tiles represents the next value of the binary counter.

2. Binary counter tile types. The following tile types implement a fixed-width binary counter that counts
every positive integer. Self-assembly proceeds naturally from LSB to MSB, which in our construction
is top-to-bottom.

(a) The first (topmost) tile type to attach (depending on whether the current row represents an even
or odd integer) - add the following tile types:

Even integer Odd integer

c

*r

*1 *000

n

*r

*0 *111

(b) Interior tile types that perform increments; The ‘c’ and ‘n’ characters symbolize situations in
which there is either a carry bit coming in from the top or there is no carry bit.

i. If there is a carry bit coming in, add the following tile types:

No carry Carry bit
bit out out Bottom

n

c

0 111

c

c

1 000

c

0* 1*11

ii. If there is no carry bit coming in, then for all x ∈ {0, 1}, add the following tile types:

No carry
bit out Bottom

n

n

x xxx

n

x* x  x*x

(c) Tile types that increase the number of bits in the binary counter - add the following tile types:

Propagate carry Increase width
bit past border by 1 unit

c

c

1* 000

c

1*11
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3. Subtraction tile types (a modification of the optimal binary counter given in [4]).

(a) Tile types that search for the least significant 1 bit in the current column - for all x ∈ {0, 1}, add
the following tile types:

Top Interior Bottom

s

r

*1x *0x0

s

s

0x 0x0

s

s

0*x 0*ax0

(b) Tile types that find the least significant 1 bit in the current column - for all x ∈ {0, 1}, add the
following tile types:

Interior Bottom

c

s

1x 1x1

c

s

1*x 1*x1

(c) Tile types that copy the least significant bits to the right (bottom) of the least significant 1 bit
in the current column - for all x, y ∈ {0, 1}, add the following tile types:

Interior Bottom

c

c

xy xyx

c

c

x  y* x  y*x

(d) The first tile type to attach in a row that represents an odd integer. Note that all tile types that
attach above this tile type in a given column will represent the bit 1 (this is the purpose of the
‘t’ signal) - for all x ∈ {0, 1}, add the following tile types:

Interior Bottom

c

t

1x 0x0

c

t

1*x 0*x0

(e) Tile types that convert all the least significant bits to the right(top) of the least significant 1 (in
the previous column) to 1 - for all x ∈ {0, 1}, add the following tile types:

Top Interior

t

r

*0x *1x1

t

t

0x 1x1

(f) After subtraction reaches 0, one final column is added - for all x ∈ {0, 1}, add the following tile
types:

Top Interior Bottom

r*

*0x *0xx 0x 0xx 0*ax 0*bxx

4. Rotation tile types.
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(a) Tile types of the initial column.

i. The first tile type - for all x ∈ {0, 1}, add the following tile types:

Bottom

# ix

0*bx x*x

ii. Interior tile types - for all x, y ∈ {0, 1}, add the following tile types:

Second
to attach In general

# iy

yi

0x #xx

yi

yi

0x xx

iii. Top most tile types - for all x, y ∈ {0, 1}, add the following tile types:

Special case In general

# iy

y+

*0x #*xx
yi

y+

*0x *xx

(b) Tile types that shift ‘#’ up and to the right (not the initial or final column) while simultaneously
copying the current value of the binary counter (the fourth subgroup) left-to-right, and bottom-
to-top.

i. Shift right and then up - for all x ∈ {0, 1}, add the following tile types:

The first tile type
in a column

#x

#x xx

ii. Shift up and then right - for all x, y ∈ {0, 1}, add the following tile types:

Topmost In general

#y

y

*x #*xx
#y

y

x #xx

iii. Tile types that do not participate in shifting the ‘#’ token but are above the main diagonal
- for all x, y ∈ {0, 1}, add the following tile types:

Topmost In general

y

y

*x *xx

y

y

x xx

(c) The first tile type to attach in the final column - for all x ∈ {0, 1}, add the following tile types:

The first tile type
in a column

x

#*x * axx
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(d) Tile types that do not participate in shifting the ‘#’ token but are below the main diagonal - for
all x ∈ {0, 1}, add the following tile types:

Bottom In general

x* x*x x xx

(e) Tile types that are responsible for the self-assembly of three inert spacing rows immediately after
rotation - for all x ∈ {0, 1}, add the following tile types:

First Second Third

*

* ax * bx * bx * cx * cx *x

4.6 Overview Of The Computation Module

The final module is, for any TM M , an algorithmically generated tile set that, in conjunction with the ray
and planter modules, achieves the simulation of M on (the binary representation of) every input x ∈ Z

+. The
simulation of M on bin(x) proceeds vertically, immediately above the planter, while following the contour
defined by the rightmost edge of the ray of width x+2 (Note that by our construction of the planter module,
there is one, and only one ray of such width). As with other standard Turing machine constructions (see
[15, 10, 12]), each row in our simulation represents a configuration of M . However, the frequency with which
transitions occur is a novel feature of our construction, and is controlled by “color” signals that are received
from the abutting ray module.

4.7 Details Of Construction Of The Computation Module

Our simulation of M on x proceeds vertically while following the contour defined by the rightmost edge of
the ray of width x + 2. The right edge label of the rightmost tile type in every row of this ray sends a
“color” signal that has the potential to initiate the self-assembly of a simulation row (if M halts on x, then
eventually there will be no simulation rows to influence). The color signal defines the type of simulation row
that subsequently self-assembles, whence self-assembly of every simulation row (except “blue” rows) proceeds
left-to-right. In fact, all non-blue simulation rows, more or less, simply copy the previous configuration of
M up one unit while, in some cases, also performing a shift-to-the-right by one unit.

Simulation begins with a row of tiles that represent the initial configuration of M with input x, which is
represented by a row of ⌊lg x⌋ + 2 red tile types (see below). The initial simulation row is adjacent to the
rightmost tile of the initial row of the ray of width x + 2, and immediately above the x-axis. All subsequent
simulation rows either copy the configuration of M up to the next row (yellow and indigo rows) or do so
while also shifting the contents to the right by one unit (orange rows). However, if a green color signal
is received, then the simulation row increases the size of the working tape by a single tile (to the right),
and then performs a single computation step in the next (blue) row. Note that when the size of the tape
increases, the ray of width x+2 does not shift to the right, but the ray of width x+3 does. This relationship
between successive rays maintains the constant width gap of 2 tiles between the simulation of M on x and
the left border of the ray of width x + 3.

If M(x) ↓, upward growth of the simulation halts, and a special signal is sent along a one-tile-wide path
of tiles left-to-right along the top of the most recent simulation row. When the rightmost tile is encountered,
the path continues down along the contour of the rightmost edge of the simulation until reaching the x-axis,
at which point a black tile type is placed at the location (f(x), 0). Since there is a constant gap (of width
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2) between the right border of the simulation of M on x and the left border of the ray of width x + 3, the
halting signal proceeds unimpeded.

The following is the set of tiles that make up the simulation module.
Let M = (Q, Σ, Γ, -, δ, q0, qh) be a Turing machine where

• Q is a finite set of states;

• Σ = {0, 1} is the input alphabet;

• Γ is the tape alphabet;

• - ∈ Γ − Σ is the blank symbol;

• δ : Q × Γ → Q × Γ × {L, R}, is the transition function;

• q0 ∈ Q is the start state, and

• qh ∈ Q is the halting state.

We make the assumption that M is initially in q0 reading the leftmost symbol of its input n ∈ N, which is
in the leftmost cell on a one-way infinite tape. Further, we stipulate that M never moves left when reading
the leftmost symbol on its tape.

1. Red (seed) tile types.

(a) For all x ∈ Γ, add the following tile types:

Leftmost Rightmost

x+

q x
0q x

0

+*

x-*

x R-

(b) For all x, y ∈ Γ, add the following tile types:

Second leftmost Interior

y+

q xy
0

q x
0 yy

y+

xy

x yy

2. Orange (copy) tile types.

(a) If the location contains, or is next to the tape head, then for all x, y ∈ Γ, and for all p ∈ Q, add
the following tile types:

Left of Left of rightmost
At tape head tape head (with tape head)

pxy

px

px

pxy

x

x

pxy*

px

y*px

(b) If the location is neither at or adjacent to the tape head, nor the rightmost location in the row,
then for all x, y ∈ Γ, add the following tile types:
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Copy
(no tape head) Left of rightmost

xy

x

x

xy*

x

y*x

(c) Otherwise, for all x ∈ Γ, add the following tile types:

Rightmost

x*

x* Ox

3. Yellow tile types (shift tape contents right one unit).

(a) For all x, y ∈ Γ, and for all p ∈ Q, add the following tile types:

Interior Right of
(with tape head) tape head

px

ypx

y pxpx
y

pxy

px yy

(b) For all x ∈ Γ, and for all p ∈ Q, add the following tile types:

Leftmost Rightmost and
(with tape head) adjacent to tape head

px

px

pxpx

-*

px-*

px Y-

(c) For all x, y ∈ Γ, add the following tile types:

Interior

y

xy

x yy

(d) For all x ∈ Γ, add the following tile types:

Leftmost
(no tape head) Rightmost

x

x

xx
-*

x-*

x Y-*

4. Green tile types (pre-transition):

(a) For all x, y ∈ Γ, and for all p ∈ Q, add the following tile types:
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Interior Interior Left of rightmost
(left of tape head) (with tape head) (right of tape head)

pxy

pxy

y

ypx

ypx

px

*pxy

pxy

y*y

(b) For all x ∈ Γ, and for all p ∈ Q, add the following tile types:

Leftmost
(with tape head)

px

px

px

(c) For all x, y ∈ Γ, add the following tile types:

Interior Left of
(no tape head) rightmost

xy

xy

y

xy*

xy

y*y

(d) For all x ∈ Γ, add the following tile types:

Leftmost
(no tape head) Rightmost

x

x

x

x-*

x* G-

5. Blue tile types (Turing machine transition).

(a) Tile types that do not perform a transition.

i. For all x, y ∈ Γ, and for all p ∈ Q, add the following tile types:

Rightmost and
adjacent to tape head

xy*

pxy*

px By

ii. For all x, y ∈ Γ, add the following tile types:

Interior Interior Rightmost and not
(left of tape head) (right of tape head) adjacent to to tape head

xy

xy

< x < yy

xy

xy

x yy

xy*

xy*

x By

iii. For all x ∈ Γ, add the following tile types:
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Leftmost

x

< xx

(b) Tile types that perform a right transition. If ∃a, b ∈ Γ such that (q, b, r) = δ(p, a), then add the
following tile types:

Interior and
right of tape head

pa

bb

i. For all x, y ∈ Γ, add the following tile types:

Interior and
right of tape head

xy

qxy

qx yy

ii. For all x ∈ Γ, add the following tile types:

Start of transition Right of tape
at interior head after transition

xpa

xb

< x bb

pax

bqx

b qxqx

(c) Tile types that perform a left transition. If ∃a, b ∈ Γ such that (q, b, L) = δ(p, a), then add the
following tile types:

i. For all x, y ∈ Γ, add the following tile types:

Interior and left
of tape head

yx

yqx

< y < qxqx

ii. For all x ∈ Γ, add the following tile types:

Start of transition Right of
at interior transition

xpa

qxb

< qx bb
pax

bx

b xx

6. Indigo (copy tape contents straight up) tile types.

(a) For all x, y ∈ Γ, and for all p ∈ Q, add the following tile types:
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Interior (left Rightmost, and Rightmost, and not
of tape head) next to tape head next to tape head

pxy

y

y

ypx

px

px

pxy*

y*

Iy

(b) For all x ∈ Γ, and for all p ∈ Q, add the following tile types:

Leftmost
(with tape head)

px

px

px

(c) For all x, y ∈ Γ, add the following tile types:

Interior without
tape head Rightmost

xy

y

y

xy*

y*

Iy

(d) For all x ∈ Γ, add the following tile types:

Leftmost
(without tape head)

x

x

x

7. Violet (halting) tile types.

(a) For all x, y ∈ Γ, add the following tile types:

Initial interior Right of initial Fill in remainder
halting tile type halting tile type of final row

xq yh

H

q xyh

H

xy

H

(b) For all x ∈ Γ, add the following tile types:

Initial halting Leftmost tile type Second rightmost
tile type (leftmost) (no tape head) tile type

q xh

H

x

H

x-*

VH

8. Tile types that snake down the rightmost edge of a halting simulation.

(a) The first tile type to attach:
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Rightmost of
halting row

V

V H

(b) Grow down:

Green Orange Indigo Yellow

V

V

G H

V

V

O H

V

V

I H

V

V

Y H

(c) Initiate left growth:

Grow left

V

V H

(d) Grow left one unit:

Bump into Bump into
yellow row blue row

V

Y VH

V

B VH

9. If M halts on input n then the following tile type (the only “black” tile type in our construction) is
placed at the point (f(n), 0):

Halting indicator

R V

Figure 7 shows a trivial example of the simulation of a particular Turing machine M on input 01 (the
binary representation of 1, with a leading 0).

4.8 Proof of Correctness

Let f : Z
+ → Z

+ be as in section 1, stipulating that f(0) = −1. For each n ∈ N, define the rectangle

Qn = {f(n − 1) + 2, . . . , f(n) − 1} × {−2,−1},

and define the following assemblies.

(i) σn is the portion of the planter lying in Qn.

(ii) ρn is the ray of width n + 2, translated so that its base is the leftmost 2(n + 2) tiles in σn.

(iii) σ∗
n = σn + ρn, where “+” is the operation defined in section 3.
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Figure 7: A closer look at the simulation of M on input 1 (influenced by a ray of width 3). All three modules
can be seen in this figure.

(iv) γn is the assembly that simulates M(n) as in section 4.4.

(v) σ∗ is our planter.

(vi) αn = σ∗
n + γn.

(vii) α = σ∗ +
∑∞

n=0 αn.

Let
TM = (TM , σ, τ)

be our tile assembly system, noting that σ consists of a single tile at the origin. Define the following subsets
of TM .

(i) TR is the set of tile types used in the ray module, together with the benign tile type, all of whose edges
are given a binding strength of 1 with no color, appearing in the rectangles σn.

(ii) TC is the set of tile types in TR, together with those occurring in the computation module.

(iii) TP is the set of tile types in the planter module.

For each n ∈ Z
+, define the tile assembly systems

TR,n = (TR, σn, τ),

TC,n = (TC , σn, τ),

T ∗
C,n = (TC , σ∗

n, τ).

Lemma 4.2. For each n ∈ Z
+, A� [TR,n] = {σ∗

n}.
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Proof. Define the infinite, τ -TR-assembly sequence, ~α, to be that which is implicit in Figures 2, 3, and 4.
It is easy to see from our construction that every tile that binds in ~α does so uniquely. Furthermore, every
such tile addition occurs with exactly strength 2. It is clear that res(~α) is terminal, whence ~α is a locally
deterministic assembly sequence.

Lemma 4.3. For each n ∈ Z
+, σ∗

n is a pseudoseed of TC,n.

Proof. First, note that σ∗
n ∈ A [TC,n] because σ∗

n ∈ A [TR,n] and TR ⊂ TC .
Let α ∈ A [TC,n]. Let ~α′ be the τ -TC-assembly sequence such that res(~α′) = α. It is clear, since ~α is

locally deterministic and because of the use of module indicators in our construction, that when ~α′ assigns a
tile type to a location in ρn, it does so in agreement with ~α from Lemma 4. Thus, we can use ~α to “extend”
res(~α′) and thereby fill in the remainder of ρn. This gives us an assembly α′ ∈ A

[

T ∗
C,n

]

such that α ⊑ α′.

Lemma 4.4. For each n ∈ Z
+, A�

[

T ∗
C,n

]

= {αn}.

Proof. Define the τ -TC,n-assembly sequence ~αn as that which self-assembles each simulation row one at a
time, and according to the following rule: if the current row is not “blue,” then, by our construction, self-
assembly must proceed left to right; however, if the current row is “blue,” then ~αn first attaches the initial
tile, via a single τ -strength bond along its south edge, and then the remaining tiles in order of increasing
distance from the origin. It is clear from our construction that every tile that binds in ~αn does so uniquely,
and with exactly strength τ . Since res(~αn) is terminal, it follows that ~αn is locally deterministic.

Lemma 4.5. For each n ∈ Z
+, A� [TC,n] = {αn}.

Proof. This follows immediately from Lemma 4, Lemma 5, and the pseudoseed lemma.

Define the tile assembly system
TP = (TP , σ, τ).

Lemma 4.6. A� [TP ] = {σ∗}.

Proof. Define the infinite τ -TP -assembly sequence, ~α, to be that which self-assembles σ∗ one row at a time,
and implicit from Figures 5 and 6. Note that ~α starts from the seed tile located at the origin. It is clear from
our construction that every tile that binds via ~α does so uniquely. Furthermore, every such tile addition
occurs with exactly strength 2. It is clear that res(~α) is terminal, whence ~α is a locally deterministic assembly
sequence.

Lemma 4.7. σ∗ is a pseudoseed of TM .

Proof. First, note that σ∗ ∈ A [TM ] because σ∗ ∈ A [TP ] and TP ⊂ TM .
Let α ∈ A [TM ]. Let ~α′ be the τ -TM -assembly sequence such that res(~α′) = α. It is clear, since ~α is

locally deterministic and because of the use of module indicators in our construction, that when ~α′ assigns
a tile to a location that is in σ∗, it does so in agreement with ~α from Lemma 8. Thus, we can use ~α to
“extend” res(~α′) and thereby fill in the remainder of σ∗. This gives us an assembly α′ ∈ A

[

T ∗
C,n

]

such that
α ⊑ α′.

Lemma 4.8. σ∗ is a ~σ-TC-TM -multiseed.

Proof. Let ~σ = (σn |n ∈ Z
+ ). By our construction of the planter, it is clear that part (1), of definition 3, is

satisfied. To see that (2) is satisfied, we appeal to: Lemma 7, our construction of the ray, and the fact that
the planter spaces out each σn sufficiently. Moreover, it is clear that (5) holds because of our use of module
indicator symbols in our construction. We now turn our attention to parts (3) and (4).

Let i ∈ Z
+, and α ∈ A [Ti]. Let ~α′ be an assembly sequence such that α = res(~α′). Since (1) holds, we

can define the assembly sequence ~α = (σ∗, . . . , α), and let α∗ = res(~α). It is clear that α∗ ∈ A [T ∗
M ], and

α ⊑ α∗, whence (3) holds.
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Finally, let α∗ ∈ A [TM ]. By (1), (2), Lemma 7, and our construction of the planter, it is easy to see that
(4) holds.

Lemma 4.9. A� [TM ] = {α}.

Proof. Let T ∗
M = (TM , σ∗, τ). By Lemma 6, 7, and 9, and the multiseed lemma, A� [T ∗

M ] = {α}. It follows
by Lemma 8 and the pseudoseed lemma that A� [TM ] = {α}.

5 A Decidable Set That Does Not Self-Assemble

We now show that there are decidable sets D ⊆ Z
2 that do not self-assemble in the Tile Assembly Model.

For each r ∈ N, let
Dr = { (m, n) ∈ Z

2
∣

∣ |m| + |n| = r}.

This set is a “diamond” in Z
2 (i.e., a circle in the taxicab metric) with radius r and center at the origin. For

each A ⊆ N, let

DA =
⋃

r∈A

Dr.

As illustrated in Figure 8, this set is the “system of concentric diamonds” centered at the origin with radii
in A.

Figure 8: The set D{2,6}

The following trivial observation is used in the proof of Lemma 5.2.

Observation 5.1. |D<r| =
∣

∣

{

(m, n) ∈ Z
2

∣

∣ |m| + |n| < r
}∣

∣ = 2(r − 1)2 + 2r − 1.

Proof.

|D<r| =
∣

∣

{

(m, n) ∈ Z
2

∣

∣ |m| + |n| < r
}
∣

∣

= 2r − 1 + 2 ·
r−2
∑

i=0

(2i + 1)

= 2r − 1 + 2(r − 1)2.
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Lemma 5.2. If A ⊆ N and DA self-assembles, then A ∈ DTIME
(

24n
)

.

The proof of this lemma exploits the fact that a tile assembly system in which DA self-assembles must,
for sufficiently large r, decide the condition r ∈ A from inside the diamond Dr.

Proof. If |A| < ∞ then we are done, so assume otherwise (i.e., A is infinite).
Assume the hypothesis. Then there exists a 2-TAS T = (T, σ, τ) in which the set DA self-assembles.

Fix some enumeration ~a1,~a2,~a3 . . . of Z
2, and let M be the TM, defined as follows, that simulates the

self-assembly of T .

Require: r ∈ N

α := σ

while Dr ∩ dom α = ∅ do

choose the least j ∈ N such that ~aj ∈ ∂αi

choose t ∈ T such that ~aj ∈ ∂tαi

α := α + (~aj 7→ t)
end while

if α (~aj) ∈ B then

accept
else

reject
end if

Observe that the while loop will terminate after at most |D<r|+1−|dom α| iterations, with Dr∩dom α 6= ∅
whence M halts on all inputs. If r ∈ A, then the weak self-assembly of DA tells us that for every α ∈ A� [T ],
α (Dr) ⊆ B. Since we have ~aj ∈ Dr when the while loop terminates, M accepts, and r ∈ L(M). If r ∈ L(M),
then α (~aj) ∈ B, whence r ∈ A.

By Observation 5.1, the while loop performs at most 2(r − 1)2 + 2r − 1 iterations, and in each iteration,
we are doing at most O

(

r2
)

amount of additional work checking Dr ∩ dom α = ∅, and maintaining ∂ταi.

Thus, M decides A in O
(

24n
)

computation steps, where n = ⌊log r⌋ + 1 (i.e., the length of r).
Note: Implicit in this proof is the fact, proven by Irani, Naor, and Rubinfeld [6], that write-once memory

is equivalent to time.

We now have the following result.

Theorem 5.3 (second main theorem). There is a decidable set D ⊆ Z
2 that does not self-assemble.

Proof. By the time hierarchy theorem [5], there is a set A ⊆ N such that

A ∈ DTIME
(

25n
)

− DTIME
(

24n
)

.

Let D = DA. Then D is decidable and, by Lemma 5.2, D does not self-assemble.

Note that both Lemma 5.2 and (hence) Theorem 5.3 hold for any value of τ > 0.

6 Conclusion

Our first main theorem says that, for every computably enumerable set A ⊆ Z
+, the representation XA =

{(f(n), 0)|n ∈ A} self-assembles. This representation of A is somewhat sparse along the x-axis, because our
f grows quadratically. A linear function f would give a more compact representation of A. We conjecture
that our first main theorem does not hold for any linear function, but we do not know how to prove this.

Let D be the set presented in the proof of our second main theorem. It is easy to see that the condition
(m, n) ∈ D is decidable in time polynomial in |m| + |n|, but |m| + |n| is exponential in the length of the
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binary representation of (m, n), so this only tells us that D ∈ E = DTIME
(

2linear
)

. Is there a set D ⊆ Z
2

such that D ∈ P, and D does not self-assemble?
More generally, we hope that our results lead to further research illuminating the interplay between

geometry and computation in self-assembly.
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