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Abstract
In this paper, we investigate shape-assembling power of a tile-based model of self-assembly called the
Signal-Passing Tile Assembly Model (STAM). In this model, the glues that bind tiles together can
be turned on and off by the binding actions of other glues via “signals”. Specifically, the problem we
investigate is “shape replication” wherein, given a set of input assemblies of arbitrary shape, a system
must construct an arbitrary number of assemblies with the same shapes and, with the exception
of size-bounded junk assemblies that result from the process, no others. We provide the first fully
universal shape replication result, namely a single tile set capable of performing shape replication on
arbitrary sets of any 3-dimensional shapes without requiring any scaling or pre-encoded information
in the input assemblies. Our result requires the input assemblies to be composed of signal-passing
tiles whose glues can be deactivated to allow deconstruction of those assemblies, which we also
prove is necessary by showing that there are shapes whose geometry cannot be replicated without
deconstruction. Additionally, we modularize our construction to create systems capable of creating
binary encodings of arbitrary shapes, and building arbitrary shapes from their encodings. Because
the STAM is capable of universal computation, this then allows for arbitrary programs to be run
within an STAM system, using the shape encodings as input, so that any computable transformation
can be performed on the shapes.
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1 Introduction

Artificial self-assembling systems are most often designed with the goal of building structures
“from scratch”. That is, they are designed so that they will start from a disorganized set
of relatively simple components (often abstractly called tiles) that autonomously combine
to form more complex target structures. This process often begins from collections of only
unbound, singleton tiles, or sometimes also includes so-called seed assemblies which may be
small (in relation to the target structure) “pre-built” assemblies that encode some information
which seeds the growth of larger assemblies. This growth occurs as additional tiles bind to
those seed assemblies according to the rules of the system, allowing them to eventually grow
into the desired structures. Examples have been shown in both experimental settings (e.g.
[11, 32, 16]), as well as in the mathematical domains of abstract models (e.g. [29, 27, 6, 10, 8]).
However, in the subdomain of algorithmic self-assembly, in which systems are designed so
that the tile additions implicitly follow the steps of pre-designed algorithms, other goals
have also been pursued. These have included, for instance, performing computations (e.g.
[18, 25]), identifying input assemblies that match target shapes [26], replicating patterns on
input assemblies [17, 28], and replicating (the shapes of) input assemblies [5, 20, 1, 3, 13].
In this paper, we explore the latter, particularly the theoretical limits of systems within a
mathematical model of self-assembling tiles to replicate shapes.

We use the term shape replication to refer to the goal of designing self-assembling systems
that take as input seed assemblies and which produce new assemblies that have the same
shapes as those seed assemblies [1]. In order for tile-based self-assembling systems to perform
shape replication, dynamics beyond those of the original abstract Tile Assembly Model
(aTAM), introduced by Winfree [31] and widely studied (e.g. [29, 27, 10, 18, 4, 22, 14, 19]),
are required. In the aTAM, tiles attach to the seed assembly and the assemblies which grow
from it, one tile at a tile, and tile attachments are irreversible. A generalization of the aTAM,
the hierarchical assembly model known as the 2-Handed Assembly Model [4, 6], allows for
the combination of pairs of arbitrarily large assemblies, but it too only allows irreversible
attachments. However, for shape replication, it is fundamentally important that at least some
tiles are able to bind to the input assemblies to gather information about their shapes which
is then used to direct the formation of the output assemblies, since binding to an assembly is
the only mechanism for interacting with it. These output assemblies eventually must not
be connected to the input assemblies if they are to have the same shapes as the original
input assemblies. This requires that at some point tile bindings can be broken. A number
of theoretical models have been proposed with mechanisms for breaking tiles apart, for
example: glues with repulsive forces [24, 21], subsets of tiles which can be dissolved at given
stages of assembly [1, 9], tiles which can turn glues on and off [23, 15] (a.k.a. signal-passing
tiles), and systems where the temperature can be increased to cause bonds to break [6, 30].
Within these models, previous results have shown the power of algorithmic self-assembling
systems to perform shape replication. In [5], they used glues with repulsive forces, and in
[1] they used the ability to dissolve away certain types of tiles at given stages during the
self-assembly process, and each showed how to replicate a large class on two-dimensional
shapes. In [13], signal-passing tiles were shown to be capable of replicating arbitrary hole-free
two-dimensional shapes if they are scaled up by a factor of 2. The results of [3] deal with the
replication of three-dimensional shapes, and will be further discussed below.

The results of this paper are the first which provide for shape replication of all 3-
dimensional shapes with no requirement for scaling those shapes. Additionally, although
in [3] all three-dimensional shapes can be replicated at the small scale factor of 2, there
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XX:2 Universal Shape Replication Via Self-Assembly With Signal-Passing Tiles

Figure 1 Schematic depiction of shape replication: (Left) An input assembly, (Middle) The
assembly resulting from the encoding process which deconstructs the input assembly and encodes its
shape, (Right) The assembly created by the decoding process, which uses the encoding as its input.

it is necessary for the input assemblies to have relatively complex information embedded
within them (in the form of Hamiltonian paths through all of their points being encoded
by their glues). In our results, the input assemblies require no such embedded information.
Furthermore, the model used in [3] is more complex, allowing not only for hierarchical
assembly and signal-passing tiles, but also for tiles of differing shapes, and glue bindings that
are flexible and thus allow for assemblies to reconfigure by folding. For the results of this
paper, we have not only limited the dynamics to those of the Signal-Passing Tile Assembly
Model (STAM), but have even placed an additional restriction on the model. Rather than
assigning fixed orientations to tiles, in the model we use and call the STAMR (i.e. the
“STAM with rotation”) tiles and assemblies are allowed to rotate. This allows us to consider
an even more general, and difficult, version of the shape replication problem. Namely, the
input assemblies in our constructions have glues of a single generic type covering their entire
exteriors, and there is no distinction between a north-facing glue and an east-facing glue, for
instance, as there is in the standard STAM. This makes several aspects of working with such
generic input assemblies more difficult, but it is notable that our constructions need only
trivial, simplifying modifications to work in the standard STAM and that our positive results
thus also hold for the STAM. We show that there is a “universal shape replicator” which is a
tileset in the STAMR that can be used in conjunction with any set of generic input assemblies
and will cause assemblies of every shape in the input set to be simultaneously produced
in parallel. This is the first truly universal shape replicator for two or three dimensional
shapes1. Furthermore, we break our construction into two major components, a “universal
encoder” and a “universal decoder” (see Figure 1 for a depiction). The universal encoder
is capable of taking generic input assemblies and creating assemblies that expose binary
sequences that encode those shapes, and the universal decoder is capable of taking assemblies
exposing those encodings and creating assemblies of the encoded shapes. Due to the Turing
universality of this model, this also allows for the full range of all possible computational
transformations to occur between the encoding and decoding, and thus enables the generation
of any transformations of the shapes of the input assemblies, such as creating scaled versions
or complementary shapes.

In order for our universal shape replication construction to operate, the input assemblies
must be created from signal-passing tiles which are capable of turning off their glues and
dissociating from the assemblies. This allows for the assemblies to be “deconstructed”, and
we prove that this is necessary in order to replicate arbitrary shapes, specifically those which
have enclosed or narrow, curved cavities, and this is intuitively clear since otherwise there
would be no way to determine which locations in the interior of an input shape are included

1 Note that while replicating two-dimensional shapes, which consist of points in a single plane, our
construction will utilize three dimensions.
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in the shape, and which are part of an enclosed void. Our proof that it is also impossible
to replicate shapes with curved, but not enclosed, cavities further exhibits the additional
difficulty of working within the STAMR model which allows tile rotations.

While our universal shape encoder, decoder, and replicator achieve the full goal of the
line of research into shape replication, and also provide the ability to augment shape-building
with arbitrary computational transformations, we note that the results are highly theoretical
and serve more generally as an exploration of the theoretical limits of self-assembling systems.
The tilesets are relatively large and require tiles with large numbers of signals, and although
the input assemblies are not required to have complex information embedded within them,
a trade-off that occurs compared with the results of [3] is that our constructions make use
of a large amount of “fuel”. That is, a large number of tiles are used during various phases
but they are only temporary and aren’t contained within the target assemblies and thus
are “consumed” by the construction process. Despite the complexity of these theoretical
constructions, we think that several modules and techniques developed may be of future
use within other constructions (e.g. our “leader election” procedure which is guaranteed to
uniquely select a single corner of an input assembly’s bounding prism, to serve as a staring
location for our encoding procedure within a constant number of assembly steps despite the
lack of directional information provided by such an assembly), and also that these results
may lead the way to similarly powerful but less complex constructions that may eventually
achieve a level of being physically plausible to construct.

This paper is organized as follows. In Section 2 we provide definitions of the STAMR and
other terminology used throughout the paper, plus a series of subconstructions that appear
throughout the main constructions. In Section 3 we state our main theorem and supporting
lemmas, and present the constructions that prove them. In Section 4 we show that the
constructions can be easily adapted to also work in the standard STAM. In Section 5 we
briefly describe some of the computational transformations that could be used to augment
our constructions, and in Section 6 we prove deconstruction is necessary for shape replication
of certain classes of shapes.

2 Definitions

In this section we provide definitions of the model used, and also for several of the terms and
subconstructions used throughout the paper.

2.1 Definition of the STAMR model
Here we provide a definition of the model used in this paper, called the STAMR (i.e. the
“STAM with rotation”), which is based upon the 3D Signal-passing Tile Assembly Model
(STAM) [12]. The STAM is itself based upon the 2-Handed Assembly Model (2HAM) [6, 7],
also referred to as the “Hierarchical Assembly Model”, which is a mathematical model of
tile-based self-assembling systems in which arbitrarily large pairs of assemblies can combine
to form new assemblies.

A glue is an ordered pair (l, s), where l ∈ Σ+ ∪{s∗ : s ∈ Σ+} is a non-empty string, called
the label, over some alphabet Σ, possibly concatenated with the symbol ‘∗’, and s ∈ Z+ is a
positive integer, called the strength. A glue label l is said to be complementary to the glue
label l∗.

A tile type is a mapping of zero or more glues, along with glue states and possibly signals,
which will be defined shortly, to the 6 faces of a unit cube. A tile is an instance of a tile
type, and is the base component of the STAMR. Each tile type is defined in a canonical
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XX:4 Universal Shape Replication Via Self-Assembly With Signal-Passing Tiles

orientation, but tiles can be in that orientation or any rotation which is orthogonal to it (i.e.
they are embedded in Z3).

Every glue can be in one of three glue states: {on, latent, off}. If two tiles are placed
next to each other, and their adjacent faces have glues g1 = (l, s) and g2 = (l∗, s), then those
glues can form a bond whose strength is s. We require any copies of glues with the label l, or
its complement l∗, in any given system have the same strength (e.g. it is not allowed to have
one glue labeled l with strength 1 and another labeled l or l∗ with strength 2).

A signal is a mapping from a glue gs (the source glue) to an ordered pair, (gt, s), where
gt (the target glue) is a glue on the same tile as gs (possibly gs itself) and s ∈ {on, off}. If
and when gs forms a bond with its complementary glue on an adjacent tile, the signal is
fired to change the state of gt to state s. Each glue of a tile type can be defined to have zero
or more signals assigned to it. Each signal on a tile can fire at most a single time. When a
glue is fired, the state of the target glue is not immediately changed, but the pair (gt, s) is
added to a queue of pending signals for the tile containing its glues. When a pending glue
is selected for completion (in a process described below), then the state of gt is changed to
s if and only if its current state is s0 and (s0, s) ∈ {(on, off), (latent, on), (latent, off)}.
That is, the only valid glue state transitions are on to off, or latent to on or off.

A supertile is (the set of all translations and rotations of) a positioning of one or more
connected tiles on the integer lattice Z3. Two adjacent tiles in a supertile can form a bond
if the glues on their abutting sides are complementary and both are in the on state. Each
supertile induces a binding graph, a grid graph whose vertices are tiles, with an edge between
every pair of bound tiles whose weight is the strength of the bound glues. A supertile is
τ -stable if every cut of its binding graph cuts edges whose weights sum to at least τ . That
is, the supertile is τ -stable if at least energy τ is required to separate the supertile into two
parts. Assembly is another term for a supertile, and we use the terms interchangeably, to
mean the same thing.

Each tile has a tile state that contains the current state of every glue as well as a (possibly
empty) set of pending signals and a (possibly empty) set of completed signals. Every supertile
consists of not only its set of constituent tiles, but also their tile states, and a set bonds that
have formed between pairs of glues on adjacent tiles.

A system in the STAMR is an ordered triple (T, S, τ) where T is a finite set of tiles called
the tileset, S is a system state which consists of a multiset of supertiles that each have a count
(possibly infinite), and τ ∈ Z+ is the binding threshold (a.k.a. temperature) parameter of the
system which specifies the minimum strength of bonds needs to hold a supertile together. In
the initial state of a system, no tiles have pending signals, all pairs of adjacent glues which
are both complementary and in the on state in all supertiles have formed bonds and any
signals which would have been fired by those bonds are completed, and all distinct supertiles
are assumed to start arbitrarily far from each other (i.e. none is enclosed within another).
By default (and unless otherwise specified), the initial state contains an infinite count of all
singleton tiles in T .

A system evolves as a (possibly infinite) series of discrete steps, called an assembly
sequence, beginning from its initial state. Each step occurs by the random selection and
execution of one of the following actions:
1. Two supertiles currently in the system, α and β, are translated and/or rotated without

ever overlapping so that they can form bonds whose strengths sum to at least τ . The
count of the newly formed supertile is increased by 1 in the system state and the counts of
each of α and β are decreased by 1 (if they aren’t∞). In the newly created supertile, from
the entire set of pairs of glues which can form bonds, a random subset whose strengths
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sum to ≥ τ is selected and bonds formed by those glues are added to the set of bonds
that have formed for that supertile. Additionally, for each glue which forms a bond, all
signals for which it is a source glue, but which aren’t already pending or completed, are
added to the set of pending signals for its tile.

2. For any supertile currently in the system, from the set of pairs of glues which can form
bonds but haven’t, a glue pair is selected and a bond formed by those glues is added to
the set of bonds that have formed for that supertile. Additionally, for each glue which
forms that bond, all signals for which it is a source glue, but which aren’t already pending
or completed, are added to the set of pending signals for its tile.

3. For any supertile currently in the system, a pending signal is selected from the set of
pending signals of one of its tiles. If the action specified by that signal is valid, the state
of the target glue is changed to the state specified by the signal. The signal is removed
from the set of pending signals and added to the set of completed signals. If the action is
not valid (i.e. the pair specifying the current state of the target glue and the desired end
state is not in {(on, off), (latent, on), (latent, off)}), then the signal is just removed
from the pending set and added to the completed set, and there is no change to the target
glue.

4. For a supertile γ currently in the system for which there exists one or more cuts of < τ

(which could be the case due to one or more glues changing to the off state), one of
those cuts is randomly selected and γ is split into two supertiles, α and β, along that cut.
The count of γ in the system state is decreased by one (if it isn’t ∞) and the counts of α
and β are increased by one (if they aren’t ∞).

Given a system T = (T, S, τ), a supertile is producible, written as α ∈ A[T ], if it either is
contained in the initial state S or it can be formed, starting from S, by any series of the
above steps. A supertile is terminal, written as α ∈ A�[T ], if it is producible and none of
the above actions are possible to perform with it (and any other producible assembly, for list
item 1).

Note that tiles are not allowed to diffuse through each other, and therefore a pair of
combining supertiles must be able to translate and/or rotate without ever overlapping into
positions for binding. It is allowed, though, for two supertiles, α and β, to translate and/or
rotate into locations which are partially enclosed by another supertile γ before binding,
potentially creating a new supertile, δ, which would not have been able to translate and/or
rotate into that location inside γ, without overlapping γ, after forming. However, although
the model allows for supertiles to assemble “inside” of others, in order to strengthen our
results we do not utilize it for the constructions of our positive results, but its possibility
does not impact our negative result.

I Definition 1. Given an STAMR system T = (T, S, τ), we say that it finitely completes
with respect to a set of terminal assemblies α̂ if and only if there exists some constant c ∈ N
such that, if in the initial configuration S, each element of S was assigned count c, in every
possible valid assembly sequence of T , every element of α̂ is produced.

A system which finitely completes with respect to assemblies α̂ is guaranteed to always
produce those assemblies as long as it begins with enough copies of the (super)tiles in its
initial configuration, i.e. it cannot follow any assembly sequence which would consume one
or more (super)tiles needed to form those assemblies before making them.

I Definition 2. A shape is a non-empty connected subset of Z3, i.e. a connected set of unit
cubes each of which is centered at a coordinate ~v ∈ Z3. A finite shape is a finite connected
subset of Z3.
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Figure 2 Example of a bent cavity, assuming that the planes on the sides into and out of the
page were also filled in, leaving a single-cube-wide path into the interior of the shape.

In this paper, we consider shapes to be equivalent up to rotation and translation and
unless stated otherwise explicitly, we will use the word shape to refer only to finite shapes.

I Definition 3. Given a shape s, a bounding box is a rectangular prism in Z3 which
completely contains s. The minimum bounding box is the smallest such rectangular prism.

I Definition 4. Given a shape s, we use the term enclosed cavity in s to refer to a set of
connected points in Z3 that are not contained in s and for which no path in Z3 exists that
does not intersect at least one point in s and gets infinitely far from all points in s.

I Definition 5. Given a shape s, we use the term bent cavity in s to refer to a set of
connected points in Z3 contained inside of the minimum bounding box of s, bs, but not
contained within s itself, such that it includes some points which can be reached by straight
lines in Z3 beginning from points in bs, and some points which cannot be reached by straight
lines in Z3 beginning from points in bs.

See Figure 2 for an example of a bent cavity.

I Definition 6. We define a shape encoding function fe as a function which, given as input
an arbitrary shape s, returns a unique finite set E of binary strings, each unique for the
shape s, such that there exists a shape decoding function, fd and fd(e) = s for all e ∈ E.

The shape encoding function we will define by construction in the proof of Lemma 14
will generate a set of binary strings for each input shape s such that each string encodes the
points of the shape starting from a different reference corner and rotation of a bounding box.
That can lead to up to 24 unique binary strings (for 3 rotations of each of 8 corners) for
most shapes, but less for those with symmetry.

I Definition 7. Given a shape S and a point p = (x, y, z) ∈ S, we define the neighborhood of
p in S to be the set S∩{(x+1, y, z), (x−1, y, z), (x, y+1, z), (x, y−1, z), (x, y, z+1), (x, y, z−1)}.
We also say that neighborhoods are equivalent up to rotation, so there is 1 neighborhood
containing 1 point, 2 with 2 points, 2 with 3 points, 2 with 4 points, 1 with 5 points, and 1
with 6 points.

I Definition 8. We define a uniformly covered assembly as an assembly α where every
exposed side of every tile has the same strength 1 glue which is on. Additionally, if s is the
shape of α, we require that for every 2 points p, q ∈ s with the same neighborhood, a tile of
the same type is located in both locations p and q in α.

A uniformly covered assembly has the same glue all over its surface, with no glues
marking special or unique locations, and has the same tile type in each location with the
same neighborhood, so such an assembly can convey no information specific to particular
locations, orientation, etc.
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I Definition 9. We define a deconstructable assembly as an assembly where (1) all neigh-
boring tiles are bound to each other by one or more glues whose strengths sum to ≥ τ , and
(2) each tile contains the glue(s) and signal(s) necessary to allow for all glues binding it to
its neighbors to be turned off.

In the following definitions, we will use the term junk assembly to refer to an assembly
that is not a “desired product” of a system, but which is a small assembly composed of tiles
which were used to facilitate the construction but are now terminal and cannot interact any
further.

I Definition 10 (Universal shape encoder). Let S be the set of all finite shapes, let fe be a
shape encoding function, let c ∈ N be a constant, and let E be a tileset in the STAMR. If, for
every finite subset of shapes S′ ⊂ S, there exists an STAMR system ES′ = (E, σS′ , τ), where
σS′ consists of infinite copies of assemblies of each shape s ∈ S′ and also infinite copies of
the singleton tiles from E, such that (1) for every shape s ∈ S′ there exists at least one binary
string bs ∈ fe(s) and there exist infinite terminal assemblies of ES′ that contain glues in the
on state on the exterior surfaces of those assemblies that encode bs (which we refer to as
an assembly encoding s), (2) every terminal assembly is either an assembly encoding some
s ∈ S′ or a “junk assembly” whose size is bounded by c, and (3) no non-terminal assembly
grows without bound, then we say that E is a universal shape encoder with respect to fe.

I Definition 11 (Universal shape decoder). Let S be the set of all finite shapes, let fe be a
shape encoding function, let c ∈ N be a constant, and let D be a tileset in the STAMR. If, for
every finite subset of shapes S′ ⊂ S, there exists an STAMR system DS′ = (D,σS′ , τ), where
σS′ consists of infinite copies of assemblies each of which encode a shape s ∈ S′ with respect
to fe, and also infinite copies of the singleton tiles from D, such that (1) for every shape
s ∈ S′ there exist infinite terminal assemblies of shape s, (2) every terminal assembly is
either an assembly of the shape of some s ∈ S′ or a “junk assembly” whose size is bounded by
c, and (3) no non-terminal assembly grows without bound, then we say that D is a universal
shape decoder with respect to fe.

I Definition 12 (Universal shape replicator). Let S be the set of all finite shapes and let R
be a tileset in the STAMR, and let c ∈ N be a constant. If, for every finite subset of shapes
S′ ⊂ S, there exists an STAMR system RS′ = (R, σS′ , τ), where σS′ consists of infinite
copies of assemblies of each shape s ∈ S′ and also infinite copies of the singleton tiles from
R, such that (1) for every shape s ∈ S′ there exist infinite terminal assemblies of shape s,
(2) every terminal assembly is either an assembly of the shape of some s ∈ S′ or a “junk
assembly” whose size is bounded by c, (3) the number of assemblies of each shape s ∈ S′
grows infinitely, and (4) no non-terminal assembly grows without bound, then we say that R
is a universal shape replicator.

2.2 STAMR Gadgets and Tools

Throughout our results we repeatedly make use of several small assemblies of tiles, referred
to as gadgets, and patterns of signal activations to accomplish tasks such as keeping track of
state, removing specific tiles, and passing information across an assembly. In this section we
describe several of these gadgets and signal patterns so that they can later be referenced
during our construction. We intend that this section also serve as a basic introduction by
example to the dynamics of signal tile assembly.
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Detector Gadgets

Detector gadgets are used to detect when a specific set of tiles exist in a particular configuration
relative to one another in an assembly. For a detector gadget to work, the tiles to be detected
need to each be presenting a glue unique to the configuration to be detected. The strength
of these glues should add to at least the binding threshold τ , but the total strength of any
proper subset of the glues should not. If two or more tiles then exist in the configuration
expected by the detector gadget, the gadget can cooperatively bind with the relevant glues.
Upon binding, any signals with the newly bonded glues as a source will fire. These signals
can be in the “detected tiles” or in the detector itself and can be used to initiate some other
process based on the condition that the tiles exist in the specified configuration. More often
than not, it’s also desirable for signals within the detector gadget to deactivate its own glues
so that it does not remain attached to the assembly after the detection has occurred.

Figure 3 A simple detector gadget example.

Detector gadgets can exist in many forms
depending on the configuration to detect,
but the most simple is a single tile. Illus-
trated in Figure 3 is a simple detector gadget
designed to detect 2 diagonally adjacent tiles,
each presenting a strength-1 glue of type d
towards a shared adjacent empty tile loca-
tion. In this case, τ = 2 and the detected
tiles are designed to activate their x glues
upon a successful detection. In general, de-
tector gadgets can be made up of more than
1 tile. Duples of tiles can be used for in-
stance to detect immediately adjacent tiles each presenting some specific glue on the same
side. For detector gadgets consisting of more than 1 tile, the component tiles must be
designed to have unique τ -strength glues between them so that the components can bind
together piece-wise to form the whole gadget. Because all of the glues presented for the
detection are needed to reach a cumulative strength of τ , only after it is fully formed will it
be able to detect tiles and thus partially assembled detector gadgets will not erroneously
perform partial detections. It is assumed in our results that signals within a detector gadget
itself will cause the gadget to dissolve after a detection.

Corner Gadgets

Figure 4 A corner gadget example.

Corner gadgets are a specific type of detector gadget which are used primarily for facilitating
the attachment of other tiles on the surface of some assembly. Corner gadgets can either be
2D, consisting of 3 tiles arranged in a 2× 2 square with one corner missing, or 3D, consisting
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of 7 tiles arranged in a 2 × 2 × 2 cube with one of the corners missing. Because of this
shape, a corner gadget is able to cooperatively bind to any single tile of an assembly with 2
accessible, adjacent faces. These faces must be presenting specified glues whose cumulative
strength is at least τ , but neither individually is. Illustrated in Figure 4 is the side view of
a 2D corner gadget attaching to an assembly. After the attachment, it is then possible for
additional tiles to cooperatively bind along the surface of the assembly. This behavior is
useful for initiating the growth of shells of tiles around an assembly as will be seen in our
later construction.

Like with detector gadgets, signals fired from the binding of a corner gadget can also be
used to initiate other tasks, though special care needs to be taken for 3D corner gadgets
when τ = 2. Because a 3D corner gadget has 3 interior faces which can have glues to bind
with a tile on the corner of an assembly, it is often desirable to fire signals from all 3 of
these glues; however, because only 2 glues are necessary to meet the binding threshold when
τ = 2, the third may not form a bond immediately. If it is planned for the corner gadget
to eventually detach, then it is crucial that any signals causing the corner gadget to detach
cannot fire until all 3 of the interior glues have first bound. This can often be accomplished
using sequential signaling as described below.

Figure 5 Sequential signaling example.

Sequential Signaling

By carefully adding additional helper glues and signals to a tile or tiles, we can ensure that
signals in our tiles are fired in a specific order or ensure that a certain set of glues has
successfully bound before certain signals are fired. The way in which this is done depends
on the exact situation, but as an example consider the situation illustrated in Figure 5.
In this situation we want the green tile to cooperatively bind to the assembly via glues of
type a and b. Once this happens, we want to first activate additional glues of type u and v
between the green tile and assembly so that each side of the green tile is attached to the
assembly with strength 2, then we want glues of type x on the other sides of the green tile
to activate. The arrangement of signals illustrated in Figure 5 guarantees that the x glues
cannot activate before both the u and v glues do, since the signals which activate the x glues
are dependent on the glues u and v. A similar arrangement of signals and glues is used to
implement gadgets called filler tiles in our construction.

Tile Conversion

It is often useful for tiles to change behavior after receiving a specific signal. This can be
done by having signals activate a new set of glues on the tile and deactivate old ones. This
can be thought of as converting the tile into a different type of tile, but it’s important to
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note that this process cannot happen indefinitely nor arbitrarily. Every tile conversion has
to be prepared in the signals and latent glues of the tile and once those signals fire, they
cannot fire again. It is possible for a tile to convert to another several times, but such a tile
must have the necessary glues and signals for each conversion separately. It is also often
possible achieve this behavior by detachment of one tile and attachment of another in the
same location, though special care needs to be taken so that no other tiles can attach in the
location during the conversion.

Tile Dissolving

For any arbitrary set of glues on a tile, we use the term dissolving to refer to the process of
initiating signals which turn all possible glues to the off state (Figure 6). We note that due
to the asynchronous nature of the model that no guarantee can be made with regards to the
order of the processing of the signals. Tiles break apart from their supertile once a strength
τ bond no longer exists between itself and its neighbor tiles. However other glues may be
active when the tile does so, leading to the possibility of undesired binding due to exposed
glues which are in the on state with a pending off signal.

Figure 6 For some glue which initiates the dissolution of a tile, when bound to its complement it
can send messages to all glues on all faces to turn to the off state. We use the flat head to indicate
that the glue adjacent to the flat head is sent an off signal by the binding of the glue at the opposite
end of the line. Such a glue can potentially be present on each face of a tile.

Message Following

We show how to pass a message through a sequence of tiles such that after the message has
been passed, a second message can be passed through the exact same sequence of tiles in
the same order. For example, signals propagate a g message through a sequence of tiles
{Ti}n

i=0 (not necessarily distinct). We then propagate a br message through a series of glue
activations such that this message follows the sequence of tiles {Ti}n

i=0 in that order. In this
case, we say that the br message follows the g message.

Figure 7a shows a g message being passed through a tile. Let TG denote this tile. This
message enters from the south and then may potentially be output through the north, east,
or south depending on if collisions occur. The goal is to ensure that a second message can be
output through exactly that same side (and no others). Other cases where the g message
enters through the north, east, or west are equivalent up to rotation. For each possible
output signal of the g glue in TG, we define glues on the signal input side of the TG which
are activated by the output g glue being bound. As shown in Figure 7a, the north g glue
activates brn′, the east g glue activates bre′, and the south g glue activates brs′. Informally,
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the activated brn′, bre′, or brs′ glue “records” the output side of the g message. In the case
shown in Figure 7a where the g message enters from the south, the brn′, bre′, and brs′ glues
are sufficient for recording the output side of the g message. In cases where the g message
enters through the north, east, or west, a brw′ glues is required to record the case where
the g message exits through the west side of a tile. The br signal is then propagated using
brn′, brs′, bre′, and brw′ glues. Figure 7b depicts the signals and glues for propagating the
br signal in the case where the g message enters from the south. In this case the br signal
will also enter from the south. The br signal is propagated through TG as exactly one of the
brn′, brs′, and bre′ glues binds to one of the brn, bre, and brs glues on the output side of a
tile to the south of TG that is propagating br. All of the brn, bre, and brs glues must be
activated as the tile to the south of TG has no ability to know which direction the g message
of TG will take. The br signal passed to TG will have the same output side as the g signal.
For example, if the g message enters from the south and exits through the east, then, as
shown in Figure 7a, the glue bre′ will be activated; brn′ and brs′ will remain latent. Then,
as the br signal propagates through the tile to the south of TG, brn, bre, and brs are all
activated on the north side of the tile. When bre and the bre′ glue on the south edge of
TG bind, this binding event activates the glues bre, brs, and brw on the east edge of TG,
effectively propagating the br signal to the tile to the east of TG. This is shown in Figure 7b.
Notice that there are no signals belonging to TG that fire when brs′ binds. This is because
no signals are needed to propagate br to the south of TG. The binding of brs and brs′ are
enough to propagate br to the south of TG.

(a)
An example of signals
used to propagate an
g message CCW.

(b) A br message that
is following a previ-
ously passed g mes-
sage.

Figure 7 Tiles which demonstrate signal following.

3 3D Shape Replication

In this section, we show that there is a tileset in the STAMR which is capable of replicating
arbitrary shapes. This is stated in Theorem 13, and we prove it by providing modular
constructions capable of encoding and decoding arbitrary sets of shapes which are given by
Lemma 14 and Lemma 15, respectively, and then discussing how they can be combined to
replicate shapes.

I Theorem 13. There exists a tileset R in the STAMR which is a universal shape replicator,
such that for the systems using R (1) all input assemblies are uniformly covered, (2) the
constant c which bounds the size of the junk assemblies equals 4, and (3) they finitely complete
with respect to a set of terminal assemblies with the same shapes as the input assemblies.
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I Lemma 14. There exist a shape encoding function fe, and a tileset E in the STAMR

which is a universal shape encoder with respect to fe, such that for the systems using E (1)
all input assemblies are uniformly covered, (2) the constant c which bounds the size of the
junk assemblies equals 4, and (3) they finitely complete with respect to a set of terminal
assemblies which encode the shapes of the input assemblies.

I Lemma 15. There exist a shape decoding function fd, and a tileset D in the STAMR

which is a universal shape decoder with respect to fd, such that for the systems using D (1)
the constant c which bounds the size of the junk assemblies equals 3 and (2) they finitely
complete with respect to a set of terminal assemblies with the same shapes as those encoded
by the input assemblies.

We now prove Lemmas 14 and 15, and consequently Theorem 13, by construction. In
the following few sections we describe the process by which an STAMR system can encode
arbitrary shapes. We then show how an STAMR system can construct arbitrarily shaped
assemblies from the encodings produced by the encoding system. Additionally, these systems
make use of universal tilesets E and D respectively, meaning that regardless of the shapes
to be encoded or decoded, our systems never require additional tiles besides those from
E and D. These tilesets can then be combined to create a tileset R = E ∪ D which is
then a universal shape replicator. It should also be noted that constructing the universal
encoder and decoder separately allows for additional complex tasks to be performed in the
STAMR. For example, tiles are capable of simulating the execution of Turing machines to
perform arbitrary computation. As will be briefly discussed later, this means that once
shapes have been encoded, it is then possible to manipulate the encodings using simulated
Turing machines before the decoding process. Such behavior is clearly much more general
than shape replication.

3.1 Forming a bounding box and electing a corner as “leader”

Here we describe the process by which a set of arbitrary shapes S = {s1, . . . , sn} can be
encoded in the STAMR using a universal tileset E. It should be noted that we don’t explicitly
list each tile type in E; rather, much like how it is more useful to use pseudo-code instead of
compiled machine code when describing an algorithm, we describe the tiles in E implicitly
by their functionality, noting that there are many essentially equivalent ways to design tiles
which perform the necessary tasks and a discussion of the finer details regarding exactly
which signals and glue types are used in each instance would be less informative.

Given our set S of shapes, we define our STAMR system ES to be the triple (E,ΣS , τ = 2)
where ΣS is our initial system state containing assemblies of the shapes in S. This state
consists of all tiles in E, each with an infinite count, and additionally consists of a set
A = {α1, . . . , αn} of uniformly covered, deconstructable assemblies such that the shape of
αi is si for i = 1, . . . , n. The assemblies of A are called our shape assemblies and are made
only of tiles from a fixed subset of E called shape tiles. Note that the glues and signals
defined in these shape tiles are not used to encode any information regarding the structure of
our shape assemblies; any shape specific information is inferred during the encoding process
and the shape tiles simply contain the necessary glues and signals to perform basic tasks
required for the encoding process, none of which are specific to any particular part of the
shape assemblies. Additionally, we will define tile encoding and decoding functions, fe and
fd during our construction. Essentially our encoding of a shape consists of a sequence of
rows of binary values, each row corresponding to a 1-dimensional slice within the minimal
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bounding box of our shape, with 1 representing a location in the shape and 0 representing a
location not in the shape.

The encoding process described below can be largely broken down into 3 steps. First, a
bounding box is constructed around the shape assemblies using special tiles which are distinct
from the shape tiles. Then, one of the corners of the box is elected non-deterministically to
be the leader corner to provide an origin point which will represent the first tile location
of our encoding. Finally, from the leader corner, the shape will be disassembled tile-by-tile
during which an encoding assembly will be constructed, recording for each disassembled tile
whether it is part of the shape or not (i.e. a “filler” tile used to assist the construction).
During our description of the encoding process, we will follow the process for a single shape
assembly αi, but note that all shape assemblies are encoded simultaneously in parallel in ES .

3.1.1 Bounding Box Assembly Construction

The first step in our encoding process begins by forming a bounding box assembly βi through
the attachment of special tiles, called filler tiles, to αi. These filler tiles cooperatively bind
to 2 diagonally adjacent tiles of our shape assembly in order to fill out any concave portions.
When a filler tile attaches to an assembly, signals are fired from the newly bound glues which
activate additional glues between the filler tile and shape assembly. These new glues ensure
that the filler tile is bound with strength 2 on each face to the shape assembly as this will
be important during the disassembly process. After the filler tile is firmly attached with 2
strength-2 bonds, signals are then fired within the filler tile which activate strength-1 glues
of type gf on all other faces. These will be used for further filler tile attachment. Figure 8
illustrates the attachment of a filler tile to an assembly and shows how sequential signaling
is used to ensure that the filler tile is attached with strength 2 on both of its input faces
before activating glues on each of its output faces.

Because filler tiles must be able to cooperatively bind to both shape tiles and other
previously attached filler tiles, we need 3 unique types of filler tiles: One which initially
presents 2 glues of type g∗x to bind with 2 shape tiles, one which initially presents 2 glues
of type g∗f to bind with 2 other filler tiles, and one which presents one of each glue to
cooperatively bind with a shape tile and a filler tile. Each type of filler tile is otherwise
identical. Because we’ve chosen our binding threshold τ = 2, the two initially present glues
are sufficient for binding into any location on the assembly with at least 2 adjacent shape or
filler tiles. The signals from the binding of these glues then activates additional glues on the
same faces which ensures that the filler tile is attached with strength 2 on two separate faces,
regardless of whether or not additional filler tiles later bind to this one. This property will
be used to guarantee that the assembly stays connected during the disassembly process.

Eventually, after sufficiently many filler tiles have attached, there will be no more locations
in which another filler tile can attach. There are often many ways in which this can occur
for any shape assembly, but the resulting bounding box assembly will always be a minimal
bounding box of our shape. It should be noted that its possible that not every location
within the bounding box is filled. This can occur if the original shape had enclosed cavities,
but can also occur because the attachment of filler tiles can create additional cavities as they
attach. This is not a problem and it will always be possible for filler tiles to complete the
outer surface of the bounding box. Additionally, this bounding box will be uniformly covered
by glues of type gx and gf .
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Figure 8 Filler tile binding to a concave site. Once a filler tile attaches cooperatively, signals
activate glues on the filler tile and adjacent tiles. These glues ensure that the filler tile is attached
with strength 2 on all sides. These glues are activated sequentially and once both are in the on
state, signals activate output glues on all other sides of the filler tile. Once these signals activate,
the super tile has 1 fewer concave site and the filler tile behaves as though it is just another tile on
the supertile. While depicted in 2D for clarity, this occurs in 3D during our construction, but the
idea is the same.

Figure 9 Growth of the inner shell around a bounding box (illustrated in gray). Growth begins by
the attachment of corner gadgets (red). Cooperative binding with the corner gadgets and bounding
box allow edge tiles to attach (yellow). Cooperation between the edge tiles and the bounding box
then allow filler verification tiles (blue) to grow which are used to fill in the faces of the inner shell.
The process by which these verification tiles bind to the bounding box ensures that there are no
gaps or protrusions on the bounding box surface.

3.1.2 Detecting Bounding Box Completion
In order to continue with the encoding process, we first need to verify that the bounding
box is fully formed. This is done by growing a shell of tiles around our assembly. This
shell, which we call the inner shell, is able to grow to completion only if the assembly is a
fully formed bounding box. Figure 9 illustrates the high-level construction of the inner shell
around a fully formed bounding box.

Growth of the inner shell begins with the attachment of corner gadgets to our assembly.
We use 2 types of 3D corner gadgets, one which is able to bind to a corner of our assembly
presenting 3 glues of type gx and one which is able to bind to a corner presenting 3 glues
of type gf (note that at τ = 2 only two glues are needed for a corner gadget to attach, but
any tile allowing a corner gadget to attach must expose all 3). That is, the corner gadgets
can attach either to a shape tile or a filler tile on a corner of our assembly. Note that these
gadgets exist in our system while the bounding box is being constructed; therefore, it’s
possible that corner gadgets attach to tiles in our assembly before the bounding box has
been fully constructed. Additionally, special care needs to be taken when the bounding box
surrounding our shape assembly has at least one side of dimension 1. The details of the inner
shell’s construction is described below and these various cases are addressed.

When a corner gadget attaches to our assembly, signals from the attachment cause
strength-1 glues to activate on the faces of the corner gadget which point parallel to the
surface of our assembly. These glues will be used to allow cooperative attachment of special
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edge tiles that will attach in a line along the edges of a completed bounding box. The glues
activated on the corner gadget can either be of type gL

edge or gR
edge depending on which face

of the corner gadget they reside. Glues of type gL
edge indicate that the edge to be grown is a

left edge of the bounding prism relative to the direction of growth of the edge while glues of
type gR

edge indicate a right edge.
Like filler tiles, edge tiles initially have 2 active glues on adjacent faces: one of these

glues is either of type gL∗
edge or gR∗

edge so as to be complementary to the glue presented by the
corner gadget, and one of type g∗x or g∗f so as to also be complementary to a glue on the
surface of our assembly. Since any combination of these glues is necessary, there are 4 unique
types of edge tiles. Once an edge tile has cooperatively attached to our assembly, signals
are fired which activate another glue of type gL

edge or gR
edge to allow additional edge tiles to

cooperatively attach to it and the assembly. Additionally, glues are activated on all other
exposed sides of the edge tile which will be used by detector gadgets later. These glues are
unique to the specific face of the edge tile so that detector gadgets can distinguish between
the interior and exterior sides of an edge as well as the side of the edge tile pointing away
from the assembly. Although tiles are allowed to rotate in the STAMR and don’t have fixed
orientations, this directionality can be enforced by the relative orientations of the two glues
used for the initial binding of a tile. Edge tiles will continue to grow along the surface of our
assembly from corner gadgets until they are either blocked by another tile, reach the end of
the surface of our assembly, or it is detected that the edge is invalid.

Figure 10 Detecting and resolving invalid edges

For an edge to be valid, there must be
no shape or filler tiles adjacent to any edge
tiles except for those underneath the edge
tiles to which the edge tiles cooperatively
attached; additionally, if an edge is a right
(respectively, left) edge, then there must not
be a shape or filler tile occupying a location
diagonally adjacent to the right (resp., left)
of the edge tiles making up the edge with re-
spect to the forward growth direction of the
edge. Edge tiles which violate these valid-
ity conditions can be easily detected using
detector gadgets specific to the particular
situation as illustrated in Figure 10. Follow-
ing the attachment of such a detector gadget, a signal is propagated along the edge causing
all connected edge tiles and corner gadgets to dissolve. Before this signal is propagated
though, signals from the detector gadget ensure that a new filler tile is effectively added to
the assembly in a safe location (that is without causing the eventual bounding box to be
bigger than necessary). This is done using signals from the detector gadget to convert one of
its own tiles or the detected invalid tile into a filler tile. This conversion is done so that we
don’t risk infinite assembly sequences wherein a corner gadget attaches, attempts to grow an
invalid edge, and dissolves repeatedly. Because a filler tile is always effectively added upon
detection of an invalid edge, eventually it will be impossible for invalid edges to occur.

In the case where a valid edge is blocked by another tile, then there are 2 possibilities:
(1) the edge is blocked by a shape or filler tile, or (2) the edge is blocked by another edge or
corner gadget. If a filler tile blocks the path, then like with invalid edges, a detector gadget
can cooperatively bind to the blocking tile and the edge tile, convert the edge tile into a filler
tile, and propagate a dissolve signal down the remaining edge tiles. If another edge tile or
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corner gadget blocks the edge, then we need to determine if the blocking tile is part of a
valid edge. If the edge is invalid, then it will eventually dissolve and nothing needs to be
done. Otherwise, the tile blocking our edge belongs to another valid edge. In this case the
meeting point can either be at a corner of our assembly or along the edge of our assembly.
Because of the unique glues presented on all sides of an edge tile, these situations can easily
be differentiated by detector gadgets. If the meeting point is a corner, then signals from the
corresponding detector gadget will cause the corner to convert to a piece of a corner gadget.
The remaining corner gadget pieces can then attach and the result will be a corner gadget
connected to two incoming edges. If the meeting point is an edge, the detector gadget will
fire signals to activate glues between the colliding edge tiles connecting the edge tiles and
allowing future signals to propagate between them.

3.1.3 Dissolving Edge Tiles and Corner Gadgets
Care must be taken when dissolving edge tiles and corner gadgets to avoid erroneous
attachments of tiles which have dissolved, but on which not all of the glues have yet
deactivated. When dissolving edge and corner tiles, we use a procedure called careful
dissolving to guarantee safe detachment. To understand this procedure first note that,
we make a distinction between those glues which were initially active on a tile before it
attached to an assembly, which we call prior glues, and those which activated after the initial
attachment, called posterior glues. Here we make one exception regarding the strength 2
glues present between the outermost corner tile of a corner gadget and its 3 neighboring tiles,
these are classified as corner glues and will be handled differently. Also, in addition to all of
the functional glues present on an edge tile or corner gadget tile, when two edge tiles bind
to each other, a strength 1 pair of glues of type gd and g∗d, called dissolve helper glues, are
activated between them. Corner gadgets also have these glues activated between their tiles,
but this is done in a tree-like structure with the root being the outermost corner tile. This
tile shares dissolve helper glues with the 3 corner gadget tiles adjacent to it, and these share
dissolve helper glues with the 3 corner gadget tiles which cooperatively bound in between,
though only on 1 face each so as to form a tree.

Careful dissolving begins when a detector gadget binds to an edge or corner gadget tile.
This binding initiates a dissolve signal that propagates along the edge and corner gadget
tiles, deactivating all prior glues. Now suppose γ is a group of connected edge tiles which
have detached from the assembly as a result of these deactivations. By our tile design, prior
glues always only bind with with either posterior glues or bounding box glues (gx or gf ), and
posterior glues, which are always strength 1, only bind with prior glues. Notice that γ can
be presenting at most 1 prior glue of strength 1, otherwise it would not have detached from
the assembly, though it may have any number of posterior glues and some dissolve helper
glues. Because attachment to an assembly requires either a prior glue of strength 2 or two
prior glues of strength 2 to bind with posterior glues exposed by a bounding box assembly, γ
is effectively inert. It is possible that two detached junk assemblies have dissolve helper tiles
exposed, but any cooperation between these junk assemblies would require the cooperation
of a dissolve helper glue and a prior/posterior glue pair to occur. This may happen, but
eventually the prior glue will deactivate and the combined junk will dissolve.

By the connectivity offered by the dissolve helper tiles, even as γ further breaks up into
smaller assemblies or individual tiles, this property is preserved, since in addition to the
dissolve helper glues between each pair of tiles in γ, any glues holding tiles together form a
prior/posterior pair. For a strength 1 cut to exist in γ, allowing it to break apart, it must be
the case that the prior glue deactivates between the tiles, otherwise they will still be held
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Figure 11 If, as a surface of the inner shell is growing, it is found that there are shape or filler
tiles still protruding from that surface of the bounding prism, then a detector gadget will be able to
cooperatively bind with the protruding tile and adjacent verification tile. The verification tile will
then be converted into a filler tile and the other verification tiles, edge tiles, and corner gadgets will
be dissolved. In this illustration, a verification tile is adjacent to a protrusion which is 2 tiles high.
There are a few other possible configurations of verification tiles next to protrusions, each requiring
a unique detector gadget, but the idea is the same in each.

together with at least strength 2. Eventually, we will be left with only individual inert tiles
or the 4 tiles that make up the corner of a corner gadget which will also be inert by the same
argument. Thus we have a maximum junk size of 4. Careful dissolving is possible so long as
the above conditions regarding prior and posterior glues are met. This is true for all gadgets
and tiles used during the leader election process, so during the leader election process, when
we say that a dissolve signal is propagated, we mean that careful dissolving occurs between
those tiles.

3.1.4 Filler Verification
When the edges growing from 2 corner gadgets meet via edge tiles between them along the
surface of a bounding prism, signals between them through the edge tiles activate glues
which allow a filler verification process to begin. This process proceeds in iterations growing
inwards towards the surface’s center and verifies that there are no gaps or protrusions in the
surface. If gaps are found, nothing happens until those gaps are filled with filler tiles, after
which the verification continues. If protrusions are found, then as illustrated in Figure 11,
detector gadgets are able to cooperatively bind with a verification tile and a shape/filler tile
of the protrusion. Signals from this attachment cause the verification tile to become a filler
tile and cause all other involved verification tiles, edge tiles, and corner gadgets to dissolve.

The filler verification procedure is as follows. When the edge between two corner gadgets
is filled with edge tiles, a signal is able to propagate between the corner gadgets. Once a
corner gadget has received signals from its 2 neighboring corner gadgets, glues are activated
on the adjacent edge tiles allowing the cooperative binding of a tile called a verification corner
tile. This verification corner tile attaches diagonally adjacent to the corner gadget within
the region bounded by the edge tiles. Additionally, signals from the corner gadgets activate
glues on the other edge tiles which allow special verification edge tiles to cooperatively bind
with the edge tile and surface of the bounding prism. If there is a gap preventing such a
binding, it will simply not occur until filler tiles attach to fill the gap. If there is a protrusion,
a detector gadget will be able to cooperatively bind with a filler/shape tile on the protrusion
and a verification tile. That verification tile will then convert to a filler tile through signals
fired from the detector gadget and all other involved edge tiles, verification tiles, and corner
gadgets will dissolve. If no protrusion is found, the process repeats with the verification
corner tiles acting as the corner gadgets and verification edge tiles acting as the edge tiles. A
new iteration of the verification process will begin in the next inner layer of the surface.

This process will continue until the center is reached. This can happen in 2 different
ways depending on whether the shortest side of the surface is of even length or odd length.
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Figure 12 During the surface verification process, tiles attach within the rectangle formed by
edge tiles on a surface. These tiles attach in layers growing towards the center of the shape. Once
the corners of a layer are adjacent, or in the case of an odd side length when one corner touches three
sides of the previous layer, a detector gadget can bind. Signals activated by this binding indicate
that the verification process was successful and the verification tiles are dissolved

(See Figure 12.) If the shortest side of the surface is of even length, then eventually 2
verification corner tiles will be adjacent to each other. A duple detector gadget will be able
to cooperatively bind with those tiles indicating that the center has been reached. This
will happen on both pairs of adjacent corner verification tiles and once the verification edge
tiles attach between them, signals will be able to propagate between the pairs of corner
verification tiles. These signals will propagate back along the iterations of the verification
tiles and activate glues on the corner gadgets which will allow for the growth of the outer
shell to begin on this face of the bounding prism. If the shortest side of the surface is of odd
length, the process is similar, but instead of 2 verification corner tiles being adjacent, there
will be a single verification corner which is adjacent to either 2 verification corner tiles from
the previous iteration, or all 4 if the surface of the bounding prism was a square. In either
case, detection gadgets will be able to initiate signals which inform the corner gadgets that
verification of this face is complete. Additionally, upon completion, a dissolve signal causes
all glues on the verification tiles to turn off and the verification tiles themselves to dissolve.

3.1.5 Handling Thin Shapes

The process described above assumes thick shapes, those whose minimum bounding box has
no sides of length 1. To handle thin shapes (i.e. those shapes that are not thick), first note
that for every corner gadget attached to a thin shape, there will be at least one direction
where no edge tile can cooperatively attach to the corner gadget and shape assembly. This
can be detected by a detector gadget and upon detection signals will be fired accomplishing
2 tasks: (1) glues will be activated on the corner gadget which allow other corner gadget tiles
to attach as if two mirrored corner gadgets were overlapping along the thin edge, and (2) edge
tiles running along the thin edge of the assembly from the corner gadget will be dissolved
and the outgoing gL

edge or gR
edge glue from the corner gadget will be deactivated and replaced

by a newly activated glue of type gT
edge. We call corner gadgets that have been modified in

this way extended corner gadgets. To the glue of type gT
edge, a different type of tile, called
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a thin edge tile, can cooperatively attach to the assembly and corner gadget. Thin edge
tiles behave similarly to regular edge tiles and grow sequentially along the assembly. Upon
meeting another thin edge tile, like with normal edge tiles, a detector gadget cooperatively
binds and activates glues on the thin edge tiles allowing them to bind with each other if they
meet along a thin edge or converting the thin edge tiles into corner gadget tiles if they met
at a corner. If the path of the thin edge tiles is blocked by a shape or filler tile, a detector
gadget can cooperatively bind and the last thin edge tile is converted to a filler tile and a
dissolve signal is propagated down the remaining edge tiles.

In the case where our initial shape assembly is a thin rod, having dimensions 1× 1×m,
the corner gadgets which bind to the ends of the ends of the rod will be extended twice (or 3
times if m = 1). Detector gadgets can be used to determine that a corner gadget has been
extended more than once and signals from the attachment of these detector gadgets will
activate the same glues on the corner gadgets indicating that filler verification is complete
for the corresponding 1× 1 side of the assembly.

3.1.6 Outer Shell Construction
Whenever the filler verification process is completed on a surface of the bounding prism,
signals activate glues on the corner gadgets of that surface which initiate the growth of an
outer shell. The glues activated on the corner gadgets exist on the outward pointing faces of
the tiles between edge tiles and allow tiles called outer shell tiles to bind with strength 2
to these locations as illustrated in Figure 13. Once attached, these outer shell tiles present
strength-1 glues of type gout on all sides except the one that points away from the assembly.
Another type of tile, called an outer edge tile, is then able to cooperatively bind to these
outer shell tiles and the edge tiles from the inner shell. These outer edge tiles also present
gout glues which further allow other outer edge tiles to cooperatively bind on top of the edge
tiles from the inner shell. When two outer edge tiles meet along an edge, detector gadgets
can cooperatively bind to the pair causing them to activate glues between each other and
bind.

Additionally, special corner gadgets called outer corner gadgets bind with 3 outer shell
tiles on the corners of the assembly. (Because in our construction τ = 2, outer corner
gadgets really only cooperatively bind with 2 of the outer shell tiles to attach, but by using
sequential signaling, we can ensure that they do not propagate their signals to other outer
corner gadgets until they are bound to all 3 outer shell tiles on their respective corner of the
assembly.) These outer corner gadgets are different from normal corner gadgets in that they
have 12 tiles as illustrated in Figure 13. Once an outer corner gadget attaches, signals are
propagated along outer shell and outer edge tiles to adjacent outer corner gadgets.

When an outer corner gadget has received this signal from all 3 of its neighbor outer
corner gadgets, a dissolve signal is propagated to the inner shell corner gadget below. This
signal prompts that corner gadget and its edge tiles (but not any other corner gadgets) to
dissolve and additionally causes glues, called candidate glues, of type gcand to activate on
the corners of the bounding box assembly underneath and glues of a complementary type
g∗cand to activate on the interior corners of the outer corner gadgets. Because of the condition
under which these signals are fired, an outer corner gadget will not signal its underlying
inner shell corner gadget to dissolve until all of the outer shell corner gadgets neighbors are
bound to the assembly. Consequently, even though the outer shell gadgets cause the inner
shell between them and the assembly to dissolve, the outer shell will remain attached to
the assembly on at least one corner until all outer corner gadgets have attached. Once the
final outer corner gadget attaches however, the inner shell underneath will be able to fully
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Figure 13 Once filler verification has successfully occurred on a surface of our bounding box,
outer shell tiles attach to the edge tiles and corner gadgets on that surface to form a rectangle.
Between the corners of these rectangles, outer corner gadgets can cooperatively bind. Once the
corner gadgets have attached sufficiently to the outer shell tiles and the necessary connectivity
conditions have been met, inner shell tiles are dissolved from between the outer shell and bounding
box assembly. Illustrated using a cross-section view, the detachment of these tiles leaves us with
a detached bounding box assembly that is too large to fit in the gaps of the outer shell, but too
small to touch more than one interior corner of the outer shell simultaneously. Because of this, the
bounding box assembly can then bind to an interior corner of the outer shell, but only on one corner,
which is then elected leader.

dissolve and we will be left with our bounding box enclosed within but not attached to the
outer shell. While the bounding box will be free to move (slightly) within the outer shell, it
will be trapped inside of it due to their relative sizes.

Because the corners of the bounding box and interior corners of the outer shell have
complementary glues, the corners of the bounding box assembly are able to bind to the
interior corners of the outer shell; however, because the interior of the outer shell is larger
than the bounding box itself, only 1 corner will be able to touch the outer shell at any given
time, and thus to bind. The corner of the bounding box which happens to bind is elected
leader and a special glue glead on that corner is activated. Additionally, the binding of the
bounding box assembly to the outer shell causes signals to propagate which cause the g∗cand
glues on the outer shell to deactivate and then cause the outer shell to dissolve. We are then
left with a bounding box with 1 corner “elected as leader” and containing a glead glue from
which the disassembly process can begin.

3.2 Shape encoding
Following the process of leader election on a bounding box, we are presented with a single
corner with unique glues exposed indicating a leader tile. Here we describe the tiles of E
which allow for the the universal shape encoding function fe to be implemented on the shape
contained in a bounding box. We use the term voxels to reference the locations of Z3 in the
bounding box, which may contain shape tiles, filler tiles, or no tiles as there may still be
cavities within the box.

At a high level, the encoding of a shape is generated by a process which visits each
voxel in the bounding box sequentially, and transfers the information of whether the voxel is
inhabited by a filler tile or a shape tile to a new encoding assembly φ. The set of all encodings
of shapes S = {s1, . . . , sn} is Φ = {φ1, . . . , φn} where φi is the encoding of si for i = 1, . . . , n.
The first step in the process is for an encoding corner gadget (see Figure 15) to bind to the
corner elected as leader, and then construct a set of helper tiles around the bounding box.
Deconstruction is then carried out in slices, where each slice is the set of voxels contained
in a 2D subset of the bounding box. The starting voxel contains the tile elected leader
(see Figure 14) and the orientation of the binding of the encoding corner gadget arbitrarily
defines the orientation of the slices. For ease of explanation, once an orientation has been
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Figure 14 An example bounding box. The teal, fuchsia and purple tiles inhabit the slice of the
bounding box of the xy plane where z = 0. The fuchsia tile, which was elected the “leader”, is
treated as the origin (0, 0, 0). The fuchsia and purple tiles inhabit the first row, where y = 0. The
red tiles demonstrate the remaining tiles of the bounding box. We note that these tile colors are
reused in figures throughout the remainder of this section, however take on other meanings in their
respective contexts.

chosen by the attachment of the encoding corner gadget, we choose the x and y directions to
correspond to the axes along a slice and the z direction to be the axis perpendicular to x and
y into the bounding box from the leader. Specifically, each xy plane of the bounding box
constitutes one slice. The end result of the encoding process is a rectangular prism assembly
of height 1 where the each tile corresponds to a unique location of the bounding box in Z3,
and whose glues represent whether or not each location contains a shape tile (represented by
a 1), or empty space inhabited by a filler tile or otherwise (represented by 0). Additionally,
information about the order in which tiles were deconstructed is included in φi for purposes
of decoding and defining the width of a row. We note that the tiles in this section obey the
careful dissolving property in Section 3.1.3.

3.2.1 Creation of a deconstruction shell

The first step of the encoding process is for an encoding corner gadget (Figure 15), similar in
structure to the corner gadgets utilized in the leader election process, to bind to the leader
corner. We then treat that corner as the origin of our shape, where the directions of the x, y,
and z axes are shown in Figure 16. This reference point and orientation allows us to assign
coordinates to each voxel of the bounding box. Of key importance during the deconstruction
process is that the deconstructing supertile remains connected with strength 2 at all times. It
is given that the shape tiles are connected with strength 2, and filler tiles similarly connect to
both shape tiles and each other with strength 2. However, filler tiles are connected to only the
2 tiles which caused their cooperative placement and exterior filler tiles expose only strength
1 gf glues. To ensure that during the deconstruction process no tiles prematurely disconnect
from the bounding box (and to provide additional functionality during the deconstruction
process), shell tiles are added which create a shell around the bounding box and utilize the
signals demonstrated in Figure 8 to enable strength 2 connections with the exterior-most fill
tiles. At the end of the creation of the deconstruction shell (which we will also simply refer to
as the ‘shell’), the bounding box will have all tiles on its faces covered, aside from those that
are part of the first slice of the bounding box to be encoded. The shell consists of three parts
corresponding to tile types: (1) the shell base, tiles which cover one face of the bounding
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Figure 15 Encoding corner gadget utilized to bind to the elected corner. The faces with arrows
pointing towards them are those which begin with glues in the on state, complementary to the leader
election glues.

box, allow for communication between tiles in the shell and allow for cooperative binding of
recognizer tiles (to be described), (2) shell slices, which cover 3 faces of the bounding box
(aside from the tiles that are part of the first slice of the bounding box) and are removed after
each slice of the bounding box is encoded, and (3) a cap, which covers the remaining face
and allows for the encoding process to sense when it has completed the decoding process.

3.2.1.1 Shell Base Formation

The growth of the shell base is the first step of process and is initialized from the encoding
corner gadget; cooperative growth of shell base tiles begins along the xz plane, demonstrated
in Figure 16. This growth is initiated by the tile of the encoding gadget in the (0,−1, 0)
location, which activates glues on its +x and +z faces leading to base tiles being able to
cooperatively bind with the encoding corner gadget and the bounding box. Once bound to
the shape, they activate glues similar to the encoding gadget to continue the binding until
no feasible binding sites remain.

Figure 16 (Left) The encoding corner gadget (black) binding to the leader corner. Purple tiles
are deconstruction shell base tiles whose growth is initiated after binding of the encoding corner
gadget to the bounding box. Red tiles indicate the bounding box, comprised of both filler tiles and
shape tiles. (Right) After initial binding of the encoding corner gadget to the elected corner, glues
are deactivated in order to allow for the encoding process to access all voxels in the first slice of the
bounding box

3.2.1.2 Shell Slice Formation

To ensure the shell is complete before the remainder of the encoding process proceeds, the
shell growth process proceeds away from the origin in the +z direction only after shell slice
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tiles have entirely surrounded an xy plane of the bounding box. Each shell slice which grows
is only a single tile wide. The growth of the first shell slice tile is enabled by the activation of
a strength 1 glue on the encoding corner gadget on the tile in the (−1,−1, 0) location along
its +z face, and with the adjacent shell base tile. We note that this growth is initiated at
the same time as the shell base tiles, however will not begin until a shell base tile is bound
to the bounding box in the appropriate location. Cooperative binding sites between the
growing shell slice and the face of the bounding box allow for shell tiles to be placed in the
+y direction until reaching the edge of the bounding box, as shown in Figure 17. A shell
detector gadget allows for the shell slice tiles to sense they have reached an edge between two
faces of the bounding box. For the growth of shell slice tiles to continue in the +x direction
along the adjacent face, a tile must be placed on the +y face of the most recently placed
shell slice tile - the binding of the shell detector gadget to the slice tile and a tile of the
bounding box activates a strength 2 glue, allowing a second type of slice tile to bind which
contains a complementary strength 2 glue, exposing strength 1 glues along all faces adjacent
to tile face containing the strength 2 glue.

Shell growth continues until similarly reaching the edge in the +x direction, where a shell
detector gadget binds and causes the prior process to be repeated. Growth of shell slice tiles
then continues in the −y direction along the face of the bounding box until overlapping with
the shell base tiles; when a shell slice tile binds to a shell base tile, a message returns to the
shell slice tile which initiated the growth of the current slice. Upon sensing this message,
a strength 1 glue is activated on the face of shell tile which initiated growth of the current
shell slice layer in the +z direction. The shell growth process continues until reaching the
exterior most slice of the bounding box and cooperative growth is no longer possible.

Figure 17 Shell slice tiles (fuchsia) grow along the edge of the bounding box. Growth in the +y

direction is initiated from the encoding corner gadget, and continues until reaching the edge of the
bounding box. Green tiles are a shell detector gadget, allowing for the shell tiles to sense the edge of
the bounding box and activate a strength 2 glue, causing a shell tile with a complementary glue to
extend into the +y direction

3.2.1.3 Shell Cap Formation

At this point, a 4-tile capping gadget binds to an exposed, unique strength 1 glue exposed on
the +z face of outermost slice tile and either a gf or gx glue on the bounding box (Figure 19).
We note that this unique glue is activated alongside the shell slice growth glue, however
geometric hindrances prevent the capping gadget from binding at any point but the edge of
the bounding prism. This gadget, similar to the shell detector gadget, causes a strength 2
glue to be activated on the outward-most shell slice tile to place a capping tile. This allows
for a final set of capping tiles to enclose the remainder of the bounding prism; once the
capping tiles complete the shell, a message is sent back to the encoding corner gadget that
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Figure 18 Growth in the +x direction is no longer possible by the shell tiles (fuchsia), and the
shell growth duple (green) binds, allowing for shell tiles to continue growth

the encoding process can begin (Figure 20). The encoding process begins with a signal to
deactivate the glues which bind the tiles which provided geometric guidance to the encoding
corner gadget and activating a new strength 1 glue, d⊕,0.

Figure 19 4-tile capping gadget in green binding to exposed shell tiles after all shell slice tiles
have been added to the bounding box.

Figure 20 Capping layer fully added to the deconstruction shell

3.2.2 Encoding Assembly via Bounding Box Deconstruction
With the deconstruction shell created around the bounding box, we are now able to begin
the process of building the encoding structure (φ) by deconstruction. Before continuing
into the details of the encoding process, we provide a description of how the information
provided by the location of tiles in a bounding box is encoded into binary values. Beginning
with the origin point (0, 0, 0), we read the tile type information for each tile in the first row
sequentially by incrementing the x-coordinate; for example, the second tile read is in the
voxel with coordinates (1, 0, 0). Once all tiles in the current row have been read, we jump to
the next row up. For example, in a 3× 4× 5 (x× y × z) bounding box shown by Figure 21,
the final location in the first layer is (2, 0, 0). The next tile encoded is at coordinates (2, 1, 0).
We then encode tiles heading towards the origin; the next voxel encoded in our example
encoding would be (1, 1, 0). Upon arriving at the coordinate (0, 1, 0) (the last of the row
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moving in this direction) we jump to the next row up, then encoding (0, 2, 0). By this process
of visiting every tile in a slice in a ‘zig-zag’ pattern, we are able to encode the information
regarding any slice of a bounding box sequentially.

Figure 21 (Right) An example 3× 4× 5 shape, (Left) The first two rows of its encoding assembly.
The first (closest) row encodes the direction followed for each row of a slice, and the second row
encodes the presence of a shape tile or filler tile in each location. Yellow tiles represent ‘0’, red tiles
represent ‘1’. Shape tiles and ‘+’ direction growth are encoded as 0, fill tiles and ‘-’ are encoded as 1.
The encodings of additional slices only need a single row each, since the growth direction is shared
across rows of consecutive slices.

The very first row of the encoding subassembly contains additional information regarding
the direction of the growth in our zig-zag pattern, and as a byproduct we also are able to
easily retrieve the width of the rows of tiles. We compare the x values in the coordinates
(x, y, z) between the first tile of a row and the last tile of a row by subtracting the x value
between the two such that ∆x = xlast − xfirst. If a tile is contained in a row where ∆x > 0
we denote this growth in the positive (‘+’) direction. Alternatively, if ∆x < 0 we denote
this growth in the negative (‘-’) direction. We encode ‘+’ direction growth as a ‘0’, and ‘-’
direction growth as a ‘1’. For example, in Figure 21, the first row begins growth at tile 1, the
origin (0, 0, 0) and ends at (2, 0, 0), leading to ∆x = 2− 0 = 2. In contrast, the second row
begins at (2, 1, 0) and ends at (0, 1, 0), leading to ∆x = 0 − 2 = −2. We can see that the
direction tiles placed in front of row 1 are encoded as 0, and encoded as 1 for row 2. All
further slices only add a single tile for each voxel, as the direction for all tiles which have
the same x, y value in their tuple (x, y, z) is the same (e.g., the tile in (1, 0, 0) which is the
second tile placed in the first slice; the tile in (1, 0, 1) is the second tile placed in the second
slice).

For simplicity, the differentiation between shape and fill tiles is excluded in remaining
figures in this section.

3.2.2.1 First Slice Deconstruction

To encode the information contained in the first slice of the bounding box, one of four
recognizer tiles, rec0 = {0⊕0 , 1

⊕
0 , 0

�
0 , 1

�
0 }, cooperatively bind to a tile in the bounding box

and the corner gadget (or the tiles added to the corner gadget, as will be shown shortly).
The recognizer tiles detect either a fill tile with glue gf or a shape tile if the glue is of type
gx. We note that the activation of the d⊕,0 glue on the encoding corner gadget allows for
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only two possible tiles to bind to the origin location. 0⊕0 tiles start with active d∗⊕,0 and g∗f
glues on adjacent edges, 1⊕0 tiles start with active d∗⊕,0 and g∗x glues on adjacent edges. The
two remaining tile types are utilized for ‘-’ direction growth. The rec0 tiles contain glues
which allow for specific growth patterns unique to the first slice; the recognizer tiles for the
remaining slices are demonstrated in Section 3.2.2.2.

Figure 22 Binding of the first recognizer tile causes additional signals which initiate growth of
tiles on the encoding corner gadget

After this binding occurs, 2 sets of signals are activated. First, the binding with the
encoding corner gadget causes the activation of a strength 2 glue on the encoding corner
gadget which allows for the growth of an additional layer of tiles in the −z direction adjacent
to the encoding gadget, shown in Figure 22. Secondly, signals are sent to the face of rec0 tile
opposite the bounding prism which allows for growth of two messenger tiles; a strength 1
glue is activated on the −y face of the outermost tile (Figure 23). Messenger tiles contain
glues which allow for the recognizer tiles to pass information regarding the direction of
growth and the tile type of the shape voxel which they are adjacent to. This, along with
activation of glues from the encoding corner gadget itself allows for cooperative growth of
a path along the edge of the encoding corner gadget (Figure 24). Once the growth of tiles
reach the tile of the encoding corner gadget located at (−1,−1,−1), cooperative growth
halts. An encoding detector gadget (green) is able to bind to the glue on the encoding corner
gadget and the outermost encoding tiles placed due to cooperative growth. This binding
of the messenger tile with the encoding detector gadget causes the activation of a strength
2 glue which allows for binding with the first tile of the encoding shape along the −x axis
(this tile ends up becoming the nucleation site for decoding as well). Once the first tile of the
encoding structure is added, additional tiles cooperatively bind to the tiles of the encoding
structure and the shell slice tiles (but not the shell cap tile). This growth is visualized in
Figure 25.

After the encoding structure tile attaches to the encoding corner gadget, the first tile
of the encoding structure exposes a strength 2 glue along its −z face, allowing for binding
of a messenger tile which redirects growth in the +y direction. Three more tiles are added
in succession - a helper tile with a strength 2 glue to allow for growth in the +y axis, a
directionality encoding tile and a 0/1 encoding tile. The three tiles are placed in this order,
growing in the +z direction as pictured in Figure 26. We have now encoded the information
of the tile type which inhabits (0, 0, 0), along with the direction of growth. Once the 0/1
encoding tile and the directionality encoding tile bind to the encoding structure, a message
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Figure 23 Two messenger tiles, uniquely mapped to the activation of rec0 tiles allow for growth
to extend out past the tiles of the encoding corner gadget for purposes of cooperative growth. Note
that strength 1 glues are activated on 4 faces of the outermost yellow tile, as we cannot guarantee in
which rotation the tile will bind

Figure 24 (left) Enabled by the outwards growth of the recognizer tiles shown in Figure 23, tiles
are able to cooperatively grow outwards. (right) An encoding detector gadget (green) can then
attach to exposed glues from the recognizer tile growth and the encoding corner gadget, allowing for
both the encoding corner gadget and recognizer tiles to ‘sense’ that we have reached the outermost
edge

Figure 25 (Left) The first tile of the encoding structure (blue) is bound to the encoding corner
gadget, (Right) cooperative growth of tiles with the first row of shell tiles
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is passed backwards through the messenger tiles towards the recognizer tile, deactivating
glues and turning into size 1 junk (i.e., dissolving the tiles) as the message propagates along
the edge of the encoding corner gadget. The purpose of deactivation is to allow for reuse of
the same path along the encoding corner gadget. This leaves only the tiles on the encoding
structure, and the first messenger tile which attached to the recognizer. Upon reaching the
recognizer tile, it exposes a glue in the −y axis to signal to the encoding corner gadget that
this recognizer has successfully encoded its adjacent voxel. After binding with this glue,
the encoding corner gadget signals for the addition of two tiles in the +x direction (using
glues on the shell tiles of the xz plane for cooperation) which activate the d⊕,0 glue in the
+y direction, allowing for the next recognizer tile to be placed. The prior process is then
repeated, which then creates a series of message tiles to grow back to the encoding structure
(Figure 27), using many of the same voxel locations. Additionally, an r glue is activated on
the recognizer tile’s direction of growth (in this case, +x) in order to allow for recognizer
tiles to detect when they need to activate d⊕,0 or d�,0 glues.

Figure 26 (left) A messenger tile binds to the first row of the encoding structure, activating a
strength 2 glue to allow for cooperative placement of the encoded direction and tile type. (right)
the first tile placed on the encoding structure is an encoding of direction, and the second is the tile
encoding the type of the tile (i.e. shape or filler)

Figure 27 (Left) Resulting structure after deconstruction of messenger tiles, (Right) Addition of
next tile in shape reuses the edge alongside the corner gadget for cooperative growth

This process repeats until recognizer tiles have encoded all information of the first row of
the shape. Once the final tile of the row has been placed, there exists no tile for which the
tiles which extend the encoding gadget can bind to. Instead of cooperative binding allowing
for the addition of a recognizer tile, a row completion gadget binds to the r glue exposed and
either a fill or shape tile. The tile which bound to the row completion gadget activates a
d�,0 glue which allows for cooperative binding with the row above after the r glue is bound,
as shown in Figure 28. Since the first row is ‘+’ direction, the row growth then changes
to ‘-’ direction . We note that 2 different versions of this row completion gadget exist to
terminate ‘+’ and ‘-’ direction growth - the glues present are the same, but the glue locations
are mirrored. Upon binding of the ‘+’ direction recognizer tile, the row completion gadget



A. Alseth, D. Hader, and M. J. Patitz XX:29

detects the type of tile above the row completed by activating a glue in the +y direction
and the −x direction. This allows for the binding of a row detector gadget if an additional
row needs to be encoded. We will describe the case where the row detector gadget is unable
to bind shortly. If the row completion gadget senses an additional row due to the binding
of a row detector gadget, the r glue holding the row completion gadget to the direction ‘0’
tile then deactivates, leaving it free to dissolve. Message tiles mapped to the ‘-’ direction
recognizer tiles (teal) allow for expanding of the encoding structure similar to the first row
and ‘+’ direction recognizer tiles; a recognizer tile binds to a tile on the bounding box,
messenger tiles allow for the growth of a path of tiles along the edge of the encoding gadget
and then extend the encoding gadget and encode both the direction of growth and tile type.
Figure 29 demonstrates this process, along with cooperative growth on top of the prior row.

Figure 28 (Left) Row completion gadget (green) binds to supertile upon completion of the
encoding of the first row. Row detector gadget (white) indicates to the detector gadget that an
additional row needs to be encoded. (Right) Signals allow for growth to continue with a recognizer
tile of direction ‘1’.

Figure 29 (Left) Growth of direction ‘1’ messenger tiles directly mimics that of direction ‘0’.
(Right) Direction ‘1’ tile recognition occurs in the opposite direction

At some point, a row completion gadget will bind to a location where there exists no
row above the previously encoded row. This condition indicates that the slice has been
completely encoded. To detect this situation the row completion gadget has a glue which
allows for cooperative binding of a slice completion gadget only if the topmost tile of the
gadget is exposed; this only occurs in the situation illustrated in Figure 30. After binding
of the slice completion gadget, the gadget activates a glue in the +z direction that, when
binding to complementary glues on the shell tiles, sends messages which dissolve (1) the shell
in the next slice, (2) the recognizer tiles of the current slice, and (3) the slice of the shape
itself.
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Figure 30 (Left) The row completion gadget has its topmost tile above the topmost row of the
current slice, allowing for the slice completion gadget (white) to bind to the row completion gadget
to indicate slice has been fully encoded. (Right) Beginning state of next slice growth after all tiles
involved in encoding the current slice are turned into size 1 junk.

3.2.2.2 Remaining Slice Deconstruction and Termination

After the encoding of the first slice has completed, we must then deconstruct the remaining
slices with similar, but slightly modified dynamics. This is due primarily to the fact that the
encoding structure now contains directionality information, which remains constant across
slices. Instead of growing along the edge of the encoding corner gadget and the encoding
structure, messenger tiles grow ‘over’ themselves - they stay in the same xy plane.

We add a new set of tiles rec = {0⊕, 1⊕, 0�, 1�} which allows for modified message tile
growth in order to encode voxel information on the encoding structure. We note that the
base fill tiles expose glues complementary to these tile types to allow for cooperative binding
of rec tiles of type d∗⊕ (as they are responsible for first row growth, which is in the ‘+’
direction). This allows for tiles of type 0⊕ or 1⊕ to bind to the first row, depending upon
the tile in the slice (i.e. if its a shape or filler tile). The growth dynamics of the messenger
tiles differ significantly from the messenger tiles which are mapped to the rec0 tiles. As
demonstrated in Figure 31, for ‘+’ growth recognizer tiles a strength 2 glue activates to bind
a messenger tile to the recognizer tile in the +y direction. Strength 1 glues are activated
on all faces of this messenger tile to allow for cooperative binding of additional messenger
tiles to continue in the −x axis towards the encoding structure. Once the messenger tile can
no longer cooperatively bind to the encoding corner gadget, a messenger detector gadget
is able to attach to the messenger tile and the encoding corner gadget, activating signals
allowing the growth of messenger tiles to place a tile encoding on the encoding structure.
After placement of this encoding tile on the encoding structure, a message is returned to
the recognizer tile indicating that the tile has been encoded, allowing for messenger tiles
to dissolve and signal to the base tile that encoding is complete, activating a glue to have
its neighbor turn on a d∗⊕ glue. This process continues across the first row, as shown in
Figure 32.

At the end of the growth of a row, we use the alternate form of the row completion gadget
(i.e., glues present on +x face of gadget, instead of −x) utilized in Section 3.2.2.1 to sense
the completion of a row by binding to the last recognizer tile and the bounding prism. This
causes the recognizer tile which bound to the row completion gadget to activate a d� glue in
the +y axis, allowing for the reversal of growth direction (Figure 33).

The ‘-’ direction recognizer tile is able to utilize only cooperative binding to place its
messenger tiles (instead of relying on a strength 2 glue to grow in the +y axis first) in the −x
axis, cooperatively growing along the top of the prior row. This process continues until the
binding of a messenger detection gadget, resulting in a placement of a tile on the encoding
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Figure 31 (Left) Direction ‘0’ growth requires the ability to grow over previously placed tiles.
(Right) Similar to the growth of the encoding structure, we require a messenger detection gadget
(green) to enable the messenger tiles to sense when they have grown to the edge of the current
encoding.

Figure 32 The second recognizer tile binds to bounding box, causing growth in the −x axis to
place an encoding tile on the encoding structure.

Figure 33 (Left) After the last tile in the row has been successfully encoded, a row completion
gadget (green) is able to bind and enable the activation of a d� glue. (Right) The first negative
direction tile (teal) binds to the top of the last recognizer tile of the prior row.
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structure (Figure 34).

Figure 34 After the detection gadget binds, the negative direction tile messengers (teal) place a
tile on the encoding structure.

Once a row completion gadget binds to the final recognizer tile along with a slice
completion gadget (see Figure 35), the tiles which comprise the current slice of the bounding
prism, its recognizer tiles and the shell of the next slice are all dissolved. We note an edge
case where a voxel may be missing a tile from the bounding prism generated (see Figure 36).
This case arises in situations where there exists either some width 1 cavity (similar to the
bent cavity in Figure 2) and the binding of a filler tile blocks diffusion for other filler tiles, or
an in enclosed cavity which is unreachable by filler tiles before deconstruction. Since this
encoding tileset also includes the tiles which generate the bounding prism, there exist filler
tiles present to be attach into such a location. As cooperative binding is required between a
face of the bounding prism and a face of either a base tile or recognizer tile, the encoding
process will not progress until a filler tile attaches to that location and a gf glue is exposed
(Figure 36).

Figure 35 Slice completion gadget (white) binds after row completion gadget binds to the final
row of a slice, identical to the process for first slice.

Once this process reaches the final slice, we end up with an exposed set of tiles in the
bounding prism which are able to be encoded utilizing the same mechanics as any other
intermediate slice. The key difference is that instead of slice shell tiles being exposed in the
+z axis, the next set of exposed tile are those of the capping layer. The encoding process
proceeds as normal, including the binding of the row completion gadget and slice completion
gadget as seen in Figure 37. After the capping tiles bind with the row completion gadget
indicating that the final slice has been encoded, in addition to the slice, messenger and
recognizer tiles dissolving into size 1 junk, a cascade of signals is sent outwards from the
capping tiles to dissolve the remainder of tiles involved in the encoding process. This includes
the base, remaining slice tiles, capping tiles, the encoding corner gadget, and the encoding
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Figure 36 (Left) A tile missing from the bounding prism undergoing the encoding process,
highlighted by a red box. We note that this exact void location would not be possible in a valid
bounding prism, however it is presented for explanatory value. (Right) Encoding halts until a filler
tile binds in the void, ensuring that encoding process does not skip a voxel.

structure upon which messenger tiles placed the encoding of the shape. Upon receiving the
dissolve signal, we note that the encoding corner gadget sends a signal to the first tile in the
encoding structure which encodes a voxel (i.e., it is set back from the direction row of the
encoding structure). The complement of this glue is found on all tiles in the encoding of
the first slice, however only this outermost tile has this glue exposed. This signal causes a
strength 2 g0 glue to be activated, allowing for a location for the decoding process to begin.

Figure 37 (Left) The final slice after encoding has completed - the binding of the row completion
and slice completion gadgets (green and white, respectively) activate glues to signal to the capping
layer that encoding is complete. (Right) At the end of the dissolution of all “helper” tiles, all that
remains is the rectangular prism of depth 1, with a glue encoding the location of each voxel of the
input shape and a strength 2 glue indicating the first tile in that encoding, plus a set of disconnected
junk tiles.

Beginning with the creation of a bounding box and leader election around a uniformly
coated shape s in Section 3.1, at the end of the assembly sequence for the tileset E we have
produced a terminal supertile φ which represents an encoding of the the shape using the
encoding function fe, with a maximum junk size of 4. The STAMR system ES = (E,ΣS , τ = 2)
finitely completes, as each of the sub-constructions to carry out the encoding fe require a
finite number of steps (and thus, finite tile count) to complete. The final property which
must hold is that regardless of the number of distinct shapes of input assemblies, the shapes
of all will be correctly replicated. By our construction, there are never exposed glues on the
surfaces of any pair of assemblies that each contain an input assembly that would allow them
to bind to each other. Since junk assemblies produced by any assembly sequence are also
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unable to negatively interact with other assemblies, a system whose input assemblies have
multiple shapes will behave simply as the union of individual systems which each have one
input assembly shape, creating terminal assemblies of all of (and only) the correct shapes.
This proves Lemma 14.

3.3 Shape Decoding
We now describe the tileset D which functions as a universal shape decoder. The STAMR

system for shape decoding is defined as DΦ = {D,ΣΦ, τ = 2}. ΣΦ includes infinite copies of
the tiles of D and the set of encoding structures generated from ES , Φ = {φ1, . . . , φn}. The
shape decoding process and tile types required can be broken into 3 main sets of tiles. We
describe the process for a single φ ∈ Φ and note that the process proceeds identically for
each encoding simultaneously. First, base tiles initiate the decoding process by binding to φ
at a unique starting location. They then grow a subassembly outward from the encoding
assembly which is guaranteed to be connected to it by at least strength 2 throughout the
decoding process. Second, we construct the shape and filler tiles (which are unique to
the decoder’s tileset, and separate from the similarly named tile types of the encoder) and
describe how encoded information allows for an assembly sequence of shape tiles guaranteed
to be connected to their neighbors in the decoded shape. Third, we have a set of tiles called
decoder tiles which read the encoding and allow for the sequential placement of shape and
filler tiles based on their location in the encoding. Similar to the concerns regarding the
shape becoming disconnected and splitting into multiple disconnected assemblies in the
deconstruction process, decoding must proceed in a manner that allows for the growth of a
slice which guarantees strength 2 connection to the encoding structure and growing shape,
and also prevents a filler tile from becoming ‘trapped’ in an enclosed volume. The prevention
of filler tiles becoming ‘trapped’ in an enclosed volume drives a significant portion of the
complexity of this process when combined with the need for strength 2 attachment of all
shape tiles at steps in an assembly sequence.

In the tileset D, we use a decoding process which places tiles in the exact same order as
the encoding process built the encoding assembly φ as presented in Section 3.2.2. Two pieces
of information are explicitly encoded in φ. The bulk of the tiles in the encoding correspond
to identifying if a location in a shape corresponds to empty space, or a tile of the shape. The
second piece of information, provided in the first row of the encoding, is the the direction of
growth; this can be utilized in two manners. First, the direction of growth provides to the
system the types of tiles to be utilized to reach the point encoded, as growth processes vary
significantly between ‘+’ direction growth (encoded as a 0) and ‘-’ direction growth (encoded
as a ‘1’). Secondly, when the direction of growth encoded changes from 0 to 1 or 1 to 0,
this indicates to the system when a tile is to be placed into a new row. This information is
required to ensure that we can grow a slice such that each tile is guaranteed to be connected
to its neighbor, but also so tile faces are assigned with the appropriate glues. We note that
the tiles in this section obey the careful dissolving property in Section 3.1.3.

We first present the details of tile attachment.

3.3.1 Fill and Shape Tile Attachment Details
In this section, we demonstrate a template for tiles which allows for the decoding process to
be carried out, allowing for connections between all shape tiles and their neighbors within a
slice. Additionally, we provide examples of gadgets which allow for the growth of consecutive
slices of a shape encoding without causing filler tiles (which are not part of the final shape,
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but may be temporarily required to ensure a strength 2 connection between portions of
shapes where a cut may exist in the binding graph of the partially decoded shape) to be
stuck in an enclosed volume of a shape. At a high level, these tiles ensure three properties:
(1) each tile is, at a minimum, connected to its neighbor in an encoding, (2) shape tiles are
connected to all adjacent shape tiles with strength 2, and (3) before any tile is added to a
new slice, if the tile in the same x, y coordinates of the prior slice is a filler tile, that filler tile
must be removed before placement of the next tile occurs. While we demonstrate how these
properties are carried out in the current section, we prove their correctness in Section 3.3.8.

3.3.1.1 Tile Type Identification

We demonstrate the filler tiles required to carry out the decoding of a shape, based upon the
requirements for incrementally building a slice utilizing the ‘zig-zag’ process. First, each filler
tile has 6 variants to handle growth along a row (also called ‘normal row growth’) and the
change of a row for both directions of growth (see Figure 38). The two tiles of normal row
growth (either +x or −x direction) are typically used for the majority of growth. There exist
two tiles which either grow in the +y direction or turn +y direction growth into +x/− x
direction growth; this leads to four total tiles when considering both directions of growth.
Shape tiles have 12 variants to also account for the type of tile of its neighbor in the previous
slice. See Figure 39 for examples of the signals necessary on shape tiles which must bind to
a shape tile in the prior slice. To determine which of these 18 possible tile variants is utilized
in any given voxel, the assembly sequence of the tileset D takes information from a variety
of sources - direction tiles, decoding tiles, direction change detectors, and neighbor detection
gadgets.

Figure 38 An example of normal row growth and direction change tiles used by the decoding
process to build a slice - these tile types map to both shape and fill tiles. (1) and (4) are standard
row growth tiles for ‘+’ and ‘-’ direction growth, respectively. (2) and (5) are row end tiles for ‘+’
and ‘-’ direction growth; they open cooperative binding sites which allow for tiles (3) and (6) to
bind and change the direction of growth. Signal activation arrows demonstrate the order in which
faces of shape tiles are determined to be either bound to a neighboring shape tile or have a fill tile
adjacent to the face.

We utilize Figure 40 to analyze the tile types which contribute information to the
determination of the final tile type placed at any given voxel, aside from neighbor detection
gadgets. The direction tile provides three pieces of information - the location of the voxel,
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Figure 39 An example of shape tiles which have shape tiles as neighbors in the prior slice. Note
that signals must pass through the face adjacent to the neighbor in the prior slice before binding to
the next tile in the slice.

and the tile growth direction (‘+’ or ‘-’ growth, defined by 0 or 1 glues, respectively), and
the growth direction of the prior tile placed. The location of the voxel is simply tracked by
the location of the direction tile which has active glues allowing for binding with decoding
tiles (tiles which bind to the locations encoding shape information on the original encoding
structure), and the direction of growth is defined by the value of the first row of the encoding
(see Figure 21 for additional details on growth direction). Each direction tile is either placed
directly on top of the first row encoding the direction of growth (as in Figure 40), or is placed
due to cooperative binding which passes the directional information among directional tiles
with the same x coordinate (i.e., tiles grow in the same direction as their neighbor in prior
slices). Additionally, the direction tile determines whether the prior direction tile was ‘+’
or ‘-’ growth direction by glue bindings. The direction change detectors bind to the current
direction tile and the direction tile for the succeeding voxel - this, along with being bound to
the prior direction tile allows for the current direction tile to expose a glue which encodes for
both the direction of growth and determine if the tile is at the beginning or end of a row. If
the direction tiles of either adjacent tile contain a growth direction different from that of the
current direction tile, the current tile is at the end or beginning of a row. The decoding tiles
provide the information as to whether the tile in the current encoding of voxel location is
either a shape of fill tile. The binding of a decoding tile to the encoding supertile is enabled
by cooperative binding with the direction tile. All the information gathered by both the
direction tile and the direction change detectors map to the activation of one of six possible
glues, corresponding to the six tiles in Figure 38. The decoding tile placed now contains the
information regarding the growth direction of the tile and whether the tile is a shape or a
filler tile.

Shape tiles take an additional piece of information - whether or not the tile in the same
(x, y) coordinate in the prior slice (i.e., if (x, y, z) is the location of current tile to be placed,
its neighbor in the prior slice is (x, y, z − 1)) is a filler tile or shape tile. A shape tile cannot
be immediately connected to a filler tile in the prior slice and remain in place, as that filler
tile must be removed to prevent it being trapped in an enclosed cavity. This information
cannot be learned at the initial binding location shown in Figure 40. As such, the decoding
tiles expose glues to enable tile growth to the voxel of the tile. This final piece of information
is determined by the binding of one of three neighbor detection gadgets.

When the growth of the decoding tiles reaches the location for placement of a tile (the
process by which this occurs is detailed in following sections), the neighbor detection gadget
cooperatively binds with the decoding tiles and the neighbor of the tile to be placed in the
current location. If a shape tile is detected, the gadget detaches and activates a glue to
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Figure 40 An example of the information which is gathered from the encoding structure. The
directional tile gathers information regarding the growth type of tile location encoded. The direction
change detector gadget (white) which detects that growth type ‘0’ shifts in growth type ‘1’, indicating
a change of row and necessitating a direction change tile. The decoder tile, once glues are available
to cooperatively bind to the encoding structure and the directional tile, determines that the tile in
the current location is a shape tile

Figure 41 Continuation of the example in Figure 40. After the decoding tile has determined all
information regarding the tile to be placed from the encoding (a shape tile which is at the end of a
row), the decoding tile initiates growth of tiles which allow for the information regarding the tile
to reach its voxel - the additional red tiles grown from the encoding structure. The final piece of
information which dictates the type of tile to place is the tile type which is present in the slice prior.
A neighbor detection gadget (teal) is utilized to cooperatively bind to the decoding tile
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place a tile which requires that binding of the neighbor occurs before growth of the slice can
continue (Figure 39). If a fill tile is detected in the prior slice, we utilize a shape tile which
pre-encodes the information that face of the neighbor contains a gx glue, as the fill tile must
be removed before the shape tile can detect the glues on the fill tile (Figure 38). Additionally,
we initiate a process of guaranteeing removal of the fill tile that requires a duple be used
for the removal process. We also have a special neighbor detection gadget for the first slice,
where the neighbor tile is a backing tile (used to enable strength 2 connections between all
slices, it is described further in Section 3.3.3). Due to the neighbor detection gadget sensing
a backing tile, the shape tile to be placed will pre-encode the gx glue. The binding of the
neighbor detection gadget to a backing tile causes the growth of an additional backing tile.

3.3.1.2 Detecting Neighbors and Removing Fill Tiles

We present an example of the deconstruction process necessary for fill tile removal in the
decoding of a shape. The supertile described is a continuation of the examples in Figures 40, 41.
First, a fill tile neighbor detection gadget cooperatively binds to the decoding tiles growing
outward from the encoding and the fill tile of the prior slice (Figure 42).

Figure 42 The detector tile initiates the placement of a fill tile in the next voxel location. This
allows for cooperative binding of a neighbor detection gadget (teal) to the fill tile placed in the prior
slice

After this binding occurs, the fill detector gadget binds with strength 2 to the fill tile.
This binding additionally causes all the remaining glues on the fill tile to be set to the off
state; once this glue deactivation occurs, the 3-tile unit will detach from the growing supertile
and become junk (Figure 43). Detachment of the size-3 junk allows for cooperative binding
to place the tile encoded by the decoding tile such that it has not blocked the removal of
the fill tile in the prior location (Figure 44). As provided by the construction, a strength 2
connection exists between any remaining tiles in the slice.

3.3.1.3 Slice Incorporation

We refer to the process by which tiles bind to their neighbors as slice incorporation; this
process occurs in a similar manner for both type fill and shape tiles, however shape tiles
may need to additionally bind to a neighbor in the prior slice. First, a tile binds to its
predecessor. This is enabled by the two starting active glues, as shown in Figure 38 by the
solid black squares. One glue is provided by the decoding tiles, and the other is provided by
the neighbor; these map uniquely to a single tile. Once binding occurs to the predecessor
and the tile is a shape tile and has a neighbor in the prior slice, it then binds to its neighbor
(Figure 39). At this point, growth can continue in the slice and a glue is exposed; the tiles
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Figure 43 After the fill detector gadget (teal) binds to the fill decoding with strength 2, this
causes the fill tile to detach from its slice. Once all glues on the fill tile have deactivated, the size-3
junk is able to detach from the supertile.

Figure 44 The new fill tile in the current slice is allowed to cooperatively bind once the fill
detector gadget junk detaches from the supertile.

is a shape tile, it exposes at s type glue, f type if it is a fill tile. The binding of this tiles
successor activates a glue in the +y direction. Once the +y direction glues bind, we then
pass a signal in the −y direction. As shown in both Figures 38 and 39, the +y/ − y face
between tiles which change rows utilizes two separate set of glues, as tile growth occurs in
the +y direction before signaling slice growth completion. Finally, once bound in the −y
direction we activate glues in the +z direction, allowing for growth of the next slice. In this
sequence of glue activation, we guarantee that the topmost row of a slice will be bound fully
to all neighbors in the slice before glues are activated allowing for new growth. As such, in
order for the first tile in a new slice to be placed, it must be connected with strength ≥ 2 to
the encoding structure via the topmost layer.

We note that with shape tiles, each tile contains the information to be connected to its
neighbors and expose surface glues in any exterior location or internal location adjacent
to fill tiles. These exterior glues can become active immediately, or be activated at some
later point by the action of some sort of gadget binding to the surface and causing signals
be passed through the entire structure. If the glues begin in the on state, we must take
care such that if we present a replicating system (per Theorem 13) that they do begin the
encoding process while decoding is taking place. For that reason, in this construction we
do not immediately activate the gx glues of an encoded shape. The shape resulting from
our tileset is terminal once all extraneous fill tiles and base tiles have detached from the
encoding. These shape tiles begin with strength 1 glues along all exterior edges of type ga;
these have no complement in either tileset involved in replication. However, we can define
an activation corner gadget which contains two g∗a glues and is able to bind to the inactive
shape tiles. Upon binding of the activation corner gadget to the shape tile, glues bound to
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the activation corner gadget initiate a cascade of signaling to all other tiles in the shape
which deactivate ga glues and in their place activate gx glues

Having a process to connect the tiles in a slice together, we now present the remainder of
the tiles utilized to place shape tiles in the appropriate location and validate completion of
the encoded shape.

3.3.2 Base Creation
Before continuing, we first provide an example shape (and its encoding) which will be used
throughout the remainder of this section. Figure 45 demonstrates the encoding of the shape
provided in Figure 46. This shape and the encoding of the shape are used throughout the
section as an example.

Figure 45 Encoding of the initial shape. Red voxels expose ‘1’ glues on their surface, and yellow
indicate exposed ‘0’ glues. The first row indicates direction of growth for tiles in the same +z

column. The orientation of the axes for growth (identical to the orientation during encoding) is
defined as shown.

Figure 46 The shape which will be decoded from the encoding

We demonstrate the set of tiles which create a base, the initial set of tiles which, when
combined with an encoding of a shape, nucleate growth and serve as a foundation for the
remainder of the growth process. We note that this encoding in a rectangular plane is
convenient for our purposes (and prevents a massive increase in the number of tiles and
signals required), however this entire process could be completed with only ‘0’ and ‘1’ tiles
encoded in a line.

This encoding supertile begins with a strength 2 g0 glue exposed, allowing for the tile t0
to bind (Figure 47). Once t0 is bound, it begins the process of growing the base by activating
signals which cause uniquely mapped tiles to bind with the purpose of finding the width of
the shape, demonstrated in Figure 48.

We first determine the width of the shape. Since each row alternates direction, we can
utilize this information to construct a set of tiles which are able to identify the width of
the base required for decoding. A set of counting tiles are able to add tiles to the existing
supertile which define a base the width of the shape. This counting process operates by
cooperatively adding one tile to attach to the width-detection tiles. The first row is able to
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Figure 47 Initial binding of t0 to encoding supertile, with the second tile included (base tiles
indicated by blue)

Figure 48 Extending initial base tiles (blue) to begin reading the width of the shape.

utilize signals passed through the unique tiles which initiated growth to cause the addition of
at least a width-1 base (Figure 49). We note that the encoding will be guaranteed to contain
more than two tiles in any row due to the tiles added in the process of leader election. The
tile encoding the second location of the base then activates a strength 2 glue which allows
for the binding of a counting tile (Figure 50). This tile enables cooperative growth along the
edge of the currently exposed counting tiles.

Figure 49 The first counting tile extends the width of the base by 1 voxel. Since we have used
unique tiles up to the point, we are able to pass a message through to cause the addition of two
general base tiles.

Once the counting tiles reach the end of the existing growth, one of two possible counting
detectors is able to bind to the new growth of counting tiles and the encoding structure
(Figure 51). The two counting detectors have glues which sense either a ‘0’ direction tile or a
‘1’ direction tile. Since the initial row is of direction ‘0’, the counting process will be sent a
signal along the new growth to both extend the width of the base by 1 tile and dissolve the
prior placed counting detectors into size 1 junk in order to allow for the counting process to
repeat (Figure 52). Otherwise, if a direction ‘1’ tile is sensed, we have found the beginning
of the second row and can terminate the counting process. Once this counting process is
completed, we activate glues on the initial base tiles to cooperatively fill in the remainder of
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Figure 50 Newly placed tiles initiate a message which cause a strength 2 counting glue to be
exposed.

the tiles (Figure 53). The cooperative filling is determined to be complete by the binding
of a base completion gadget (Figure 54), returning a signal to t0 that causes another set of
signals to be propagated that enable the placement of a base tile in the +z direction.

Figure 51 Cooperative growth along blue base tiles allows for counting tiles (purple) to reach
the furthestmost tile. A duple (green) allows for the counting row to sense when it must extend the
base by an additional tile by cooperatively binding to both the furthest counting tile and a ‘0’ on
the encoding supertile. Messages are sent to extend both the base tiles counting the current base
width and to extend the width of the base by 1.

Figure 52 Once the counting row reaches the ‘1’ tiles, this indicates the base is of the correct
width. This is sensed by a counting duple (black) which cooperatively binds to both the counting
row and the ‘1’ glue.

3.3.3 Row 1 Tile Placement
Once the base is complete, a signal is sent to begin the decoding process of the first row.
Figure 55 demonstrates how this signal allows for a strength 2 glue to be exposed in the +y
axis, allowing for a base tile to generate cooperative binding on top of the first directional
tile. Unlike other directional tiles, the directional tile of first tile of the first row encodes
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Figure 53 After binding of the black counting duple, the counting tiles dissolve and a signal is
sent to begin cooperative growth of the remainder of the base adjacent to the encoding

Figure 54 Base completion duple (white) allows for the base to detect when tiles have extended
the base along the entire edge of the initial encoding supertile. A message returns to the initial tiles
placed once all tiles of the row adjacent to the encoding have been placed in the base.

the information that a row change tile is to be utilized, without the need for sensing the
directional tile prior (as there is no prior directional tile). Once the directional tile binds, it
then activates a glue allowing for the cooperative binding of a decoder tile that determines if
the origin tile is a shape or fill tile. Additionally, this binding causes a signal to be passed
backwards through the base tile most recently placed such that it initiates the growth of a
backing tile. Backing tiles serve two main purposes; first, to indicate to tiles of the first slice
that they are adjacent to an exterior edge, and any shape tile must encode exterior glues on
its −z face. Second, backing tiles allow for the tiles in the topmost row of a slice to bind
along their top edge with strength 2 connections. The process by which this second item
proceeds is outlined in Section 3.3.6.

Once the decoder tile determines which type is to be placed, a glue is exposed in the
+x direction to enable growth of the decoding tiles. Due to the current decoding tile being
the first tile of the row, we can guarantee that at this point a neighbor detection gadget
must bind to the recently placed backing tile and the decoding tile (Figure 56). This binding
of the neighbor detection gadget with the backing tile additionally causes the backing tile
to activate a glue allowing for cooperative binding of another backing tile with the base in
the +x direction. The decoding tile now contains all the information regarding the tile type
to place after binding with the neighbor detection gadget. A strength 2 glue allows for the
growth of an additional decoder tile (mapping to the tile type indicated in the encoding
assembly); this enables cooperative binding of the tile type mapped between itself and the
base tiles (Figure 57). After the base tile and decoded tile of the shape are connected with
strength 2, signals are sent back through the decoder tiles towards the directional tile which
initiated growth. Upon passing this signal to the decoder tile’s predecessor, all decoder tiles
not bound to the directional tile dissolve into size 1 junk (Figure 58). The decoder tile
adjacent to the directional tile activates a glue indicating for the next directional tile to be
placed, thus allowing for the placement of an additional decoding tile.

Tile additions continue also utilizing the direction change decoding demonstrated in
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Figure 55 The initial tile, once messages have been received that the base is complete, initiates
a signal which causes a base tile allow cooperative binding of the first directional tile. Additionally,
a glue initiating growth of the first backing tile is exposed in the +x direction

Figure 56 Once cooperative binding has occurred to dictate the decoding tile, glues are activated
on the +x face of the decoding tile, allowing for cooperative growth and binding of neighbor detection
tiles. A strength 2 glue is exposed upon binding with the neighbor decoding tile, allowing for a
decoding tile to be added which cooperatively places the tile encoded.

Figure 57 Once the row-1 tile binds to the base, it exposes a glue in the −z axis that allows for
the cooperative binding of the fill/shape tile encoded by the first location. Once cooperative binding
occurs, a second glue is activated which allows for a strength 2 connection between the shape/fill tile
most recently placed and its predecessor (in this case the base tile - the first row of which contains
glues and signals which allow for binding in this manner). Additionally, when the detection duple
binds to the backing tile, a signal is sent to activate glues in both the +x and +y directions which
allows for a second tile to bind

Figure 58 A message is passed backwards along the binding edges such that the direction tile
activates a glue which allows for the next directional tile to bind. Additionally, the decoding tiles
placed in support of the prior encoded location of the shape deactivate all glues and become junk to
allow for the next tile of the encoding to be placed utilizing the same path of voxels.
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Figure 59 Placement of encoded tiles continues, with decoding tiles re-utilizing the same set of
voxels to grow voxels further away from the origin.

Section 3.3.1, until the final tile of the row is reached. At this point growth continues by the
standard process of directional tiles allowing cooperative binding with the encoding structure,
however switched to direction ‘1’ growth. In order to enable the placement of encoding tiles
via direction ‘1’ growth, the backing tiles must be present in the new row to allow for binding
of neighbor detection gadgets. A backing growth detector (see Figure 60)binds to the most
recently placed backing tile and the base (or backing) tile in the row prior. Binding of the
backing growth detector allows for a strength 2 glue to be turned on to enable the growth of
a backing tile in the +y direction (Figure 61).

Figure 60 Backing growth detector (purple) binds to the outermost backing tile and the base to
signal to the backing tile to activate a strength 2 glue in the +y direction. Note that for following
rows, the backing growth detector will bind with two backing tiles

Figure 61 Binding of the next backing tile in order ready growth, allowing for binding of neighbor
detection tiles.
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3.3.4 Row 2n Tile Placement
For each even numbered row, tiles grow in the ‘-’ direction; that is, the first tile in the some
row 2n is placed above the last tile of the prior row (2n - 1) For row 0 growth, each additional
tile placed took us further away from the origin point (e.g., incrementing the x value in the
(x, y, z) position tuple). In the case of ‘-’ direction growth, tiles of the slice are placed at
the furthest-most x value of the slice and decrement to 0. While the decoding tiles of the
first row bind initially to decoding tiles, the most recently placed tile and directional tiles,
the decoding tiles of ‘-’ direction growth cooperatively bind with the prior decoding tile and
a base tile. Growth occurs in two cases; in the case of the first tile of a row of direction 1
growth, tiles bind until they reach the furthest-most base tile. When reaching the outermost
base tile, a direction ‘1’ detection gadget binds with the outermost base tile and the furthest
placed decoding tile (Figure 62). At this point, a glue is activated on the decoding tile’s
+y face, allowing for cooperative growth to continue. This allows for cooperative growth
along the previously placed tiles until no longer possible, at which point a neighbor detection
gadget is able to bind to the decoding tile and the neighbor tile (in this case a backing tile,
see Figure 63).

Figure 62 Cooperative binding for direction ‘1’ tile growth of the first tile in row 2 extends to
the edge of the base. A direction ‘1’ detection gadget (green) attaches to the base and the growing
row, indicating the edge has been reached. Once the direction ‘1’ detection gadget is bound, a glue
activates on the +y face of the tile, allowing for cooperative growth in the +y direction on the
currently grown structure.

Figure 63 The binding of the neighbor detection gadget allows for a strength 2 glue to activate
in the +y direction, allowing for a tile with glues mapping to the decoding tile type (in this case,
a shape tile which has a gx glue encoded on its back side) to cooperatively bind to the prior tile
placed.

Similarly, this allows for both the placement of the encoded tile and the extension of the
backing tiles; upon the placement of the encoded tiles, a signal is sent to dissolve all decoding
tiles not involved in growth in the +y direction into size 1 junk. The next directional tile is
added, allowing for the binding of the next decoding tile and the growth to place the tile
dictated by the encoding structure. To sense when the growth of the decoding tiles in the
+x direction has reached its furthest-most point, the remaining decoding tile which originally
redirected growth in the +y direction enables a glue similar to that present on the direction
‘1’ detector gadget. We note this does not cause interactions between multiple encoding
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processes going on in parallel, as the presence of the base tiles and the directional row offset
any possible growing decoding tile (Figure 64). Once the neighbor detector gadget binds, it
grows in the +y direction and places its encoded tile (Figure 65). This repeats until all tiles
of the row have been added.

Figure 64 After binding of neighbor detection gadget, shape tiles are placed.

Figure 65 Mid-growth of the second tile in the encoding of row 2. Note that all but one horizontal
tiles are deactivated in direction ‘1’ growth, this is in order for collision to occur and correctly place
remaining tiles.

Figure 66 Neighbor detector gadget binds to the furthest-most placed decoding tile of the second
decoding tile after colliding with the prior decoding tile growth. This leads to placement of encoded
tile and growth of backing. This process repeats for all remaining direction ‘1’ tiles in the row.

At the end of this row, the backing tiles must grow in the +y direction again. For row 2,
the current backing gadget will not work as there exists a base tile hindering growth (which
is necessary for future signals to be sent). A modified, one-tile gadget is utilized for this
specific case. Additionally, once the row is complete after the placement of a direction change
tile, all remaining decoding tiles are dissolved into size 1 junk allow for growth of direction
‘0’ tiles of the following layer.

3.3.5 Row 2n + 1 Tile Placement
While growth of row 1 was in direction ‘0’, it is a special case due to the fact that it placed
tiles in voxels with the same coordinate in the y axis as the decoding tiles by a set of tiles
unique to the first row. For remaining odd-numbered rows, we must carry out a similar
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growth in the +y direction before as placing the encoded tile as demonstrated by the row
2 growth example, but incrementing x values. We note that the example figures in this
section do not directly correspond to the encoding provided in Figure 45, however these
are presented to provide the reader with examples of how this process would occur in an
encoding which does contain at least 3 rows. Decoding tiles of some odd valued row grow by
cooperatively binding with the decoding tile and previously placed directional tiles, as with
the row 1 tiles. However, upon binding with a shape or a fill tile they activate a glue in the
+y direction. This glue attempts to allow for growth of decoding tiles in the +y direction,
leading to the binding of a neighbor detection gadget and the placement of the encoded tile
(Figures 67, 68). Similarly to even numbered direction ‘1’ row growth, decoding tiles are
dissolved into size 1 junk to allow for reuse of voxels. In contrast, all but the bottom-most
decoding tile are removed, and glues are activated allowing remaining decoding tiles to sense
that a tile has already been placed in the current location (Figure 69). In the case when the
decoding tile activates its glue in the +y direction and binds to a tile, it continues growth in
the +x direction until finding an open location to grow (Figure 70).

Figure 67 As the direction ‘0’ tile (first tile of row 3) initiates growth, when a tile is cooperatively
placed on a base tile it immediately activates a glue in the +y direction. Since a path exists for tiles
to grow in that direction, they grow until no cooperative location is available.

Figure 68 At this point, a detector gadget (teal) binds and indicates that growth has reached
the point for the placement of the voxel encoded.

3.3.6 Slice Completion
Once the directional tiles reach the end of the encoding of the final row within the structure,
a slice completion gadget binds to the end of the encoding and the directional tile. At this
point, a message is returned through the current row of directional tiles which enabled growth
of the slice (Figure 71). Once the message is received by the first directional tile, it carries
out two operations - the first being unique to the first slice. In order for the growth of
the next slice, we must be able to guarantee the shape tiles in the slice are connected to
either the shape which has grown, or are connected to the newly growing slice. To guarantee
connection of all tiles of the first slice persist even after filler tile removal, we must create
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Figure 69 As signals are passed backwards through the tile growth, all horizontal tiles are
deactivated. This allows for the direction ‘0’ voxels to sense prior placed tile locations from the same
row. Note that tiles growing along the +y axis are retained initially.

Figure 70 As the tiles which encode the second tile of row 3 grow to their placement location,
upon first cooperative binding with the base they attempt to grow in the +y direction. The signal
‘bounces’, and the growth continues along the base. Since the second location has not been placed,
the +y direction of growth is free to take place.
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strength 2 connections between the encoding structure and all tiles of the first slice. This is
accomplished by extending the growth of the backing tiles, which allows for all tiles to be
connected via strength 2 to the encoding structure. The message is sent through the base
tile which initiated growth of the first slice, into the adjacent backing tiles. After backing
tiles receiving the message, strength 2 glues are activated on all the +y direction faces of
the currently placed backing tiles. Only the topmost layer of backing tiles will allow for
cooperative placement of the new backing tiles on top of the newly created slice. The newly
placed backing tiles opens up cooperative binding locations for the backing tiles to then bind
with the top row of the slice (Figure 72). This allows for the tiles in the topmost row of
the slice to activate glues for binding to their neighbor in the −y direction. Once bound to
the neighbor in the −y direction, the tiles are then able to activate glues which allow for
neighbor detection gadgets to bind, allowing for the growth of a new slice.

Figure 71 The slice completion gadget (green) binds to the outermost directional tile and decoding
tiles, signaling for dissolution of decoding tiles and extension of backing tiles

Figure 72 Backing tiles activate strength 2 glues, allowing for cooperative growth along the top
of the first slice

In addition to the growth of the backing tiles, a signal is sent to place a new directional
tile. This directional tile takes the information of the first row of directional tiles and
cooperatively binds with both 0 and 1 tiles on the encoding structure; its purpose is to
simply pass forward the directional information and allow for the tile placement process to
continue in the next slice. In addition to the directional tile exposing a directional glue, we
also expose a terminating glue (gt) which is used in the detection of the completion of the
final slice. Once the growth of the new directional tile occurs alongside the creation of the
top row of backing tiles, growth of the new slice can begin with starting conditions shown in
Figure 73.
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Figure 73 First directional tile of the second slice is ready to begin growth.

3.3.7 Detaching From Base

Slice growth proceeds via the previously described process until reaching the final slice. Once
the final slice is placed, a slice completion gadget binds allowing for the placement of a
directional tile, as per any other row. However, the exposed terminating glue allows for
the attachment of the decoder completion detector with the outermost edge of the encoding
structure (Figure 74). Upon binding of the decoder completion detector, a glue is activated
to allow for the growth of decoder completion tiles which cooperatively bind to the outermost
slice layer. Binding of the decoder completion tiles occurs such that only attachments between
shape tiles activate glues for cooperative growth, and filler tiles must form a strength 2
duple with the decoder completion tiles. Once bound as a duple, the filler tiles send glue
deactivation signals to their remaining active glues.

Figure 74 At the completion of the final row, the decoder completion detector (black) is able to
bind with the outermost directional tile and cause growth of decoder completion tiles which remove
remaining fill tiles.

Once a decoder completion tile binds with the outermost backing tile above the top row
of a slice, it sends a dissolve message to all the base and backing tiles in the same yz plane
(Figure 75) to turn them into size 1 junk. The base tiles, upon receiving this dissolve message,
also initiate a message to dissolve the remaining tiles placed as part of the assembly sequence
into size 1 junk, including the initial binding tile t0. The initial binding tile then signals to
the encoding structure to dissolve into size 1 junk, and the only terminal assembly remaining
is the shape assembly produced by the decoding process.
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Figure 75 After the decoder completion tiles (green) bind to the final slice, this sends deactivation
signals to the fill tiles and bind to the backing tiles, a dissolve message is sent to the remaining tiles
involved in the decoding process.

3.3.8 Proof of Universal Shape Decoding Correctness

Here we briefly summarize the decoding process and show that during this process, the
shapes which were encoded in the set of input encoding assemblies Φ are correctly assembled.
We first consider the decoding process of a single encoding assembly φ ∈ Φ and note that a
similar process happens for all encoding assemblies simultaneously without interfering with
one another.

Our decoding process begins by building a base of tiles connected to φ. This base holds
the shape as it’s being constructed and is used to help ensure the connectivity of the shape
as it’s being constructed. The decoding process is performed in iterations, where during
each iteration a row of φ is scanned tile-by-tile and a corresponding 2D slice of the shape
is constructed. Each slice is constructed starting from the bottom (smallest y coordinate)
to the top (largest y coordinate), with tiles attaching in a zig-zag manner, as illustrated in
Figure 21. Each slice of the assembled shape corresponds to a unique z coordinate so for
convenience we call the slice whose z coordinate is i, σi. As each slice is assembled, tiles are
placed in each location of the slice, even those locations that will not be part of the final
shape, though these will be removed during the assembly of the next slice.

The first slice σ1 can be assembled naively, but during the assembly of each following
slice, tiles which will not be part of the final shape on the previous slice must be removed.
This is done as follows. Suppose that slice σi (i > 1) is currently being assembled. Before a
tile ti is placed in a location (x, y, i), a gadget is used to determine the type of the tile ti−1 at
location (x, y, i− 1) (i.e. the tile with the same x and y coordinates on the previous slice). If
this ti−1 is part of the final shape, then ti is placed and signals are used to activate strength
2 glues between ti and ti−1; otherwise, if ti−1 is not part of the final shape, it is removed
before ti is placed. Regardless of the type of tile ti−1, when ti is placed, glues are activated
which connect ti to all adjacent tiles on the same slice. Once the final slice is assembled, a
final zig-zag pass is made in the next z coordinate which removes all tiles from the last slice
which are not part of the final shape.

It is also important to note that the base, on which the shape is being assembled, also
forms a ceiling above the slices being assembled. This ceiling helps ensure that tiles on the
top row of each slice are able to remain attached to the assembly during construction. It
should be clear that during this decoding process (1) each tile that belongs to the final shape
is placed in its correct location, and (2) that those tiles of a slice which are not part of the
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final shape will be removed from the assembly during the assembly of the next slice. However,
because tiles are removed during the process, we must show that none of these removals can
cause parts of the assembly to unintentionally detach. We state this as Lemma 16.

I Lemma 16. Let φ be an encoding assembly which encodes the shape s. During the decoding
process above, as slice σi (i > 1) is being assembled, no tile in slices σ1, . . . , σi−1 which are
part of the final shape assembly can detach.

Proof. To prove this, we first note that all tiles in the slice σ1 which will be part of the
final shape assembly are bound to each neighboring tile in the slice, meaning that there
is no risk of detachment until tiles are removed in later slices. We use induction on the z
coordinate of the slices to show that this holds. Therefore, assume the hypothesis holds for
slices σ1, . . . , σk−1 and consider what happens as the slice σk assembles. Before the assembly
of σk, the only slice containing tiles that may need removal are in slice σk−1 since during the
assembly of a slice, all tiles which are not part of the final shape assembly are removed from
the previous slice.

As slice σk is being assembled, if all of the tiles in σk−1 are part of the final shape
assembly, then nothing will be detached and the proof is complete. Assume then that there
is some tile in slice σk−1 which is not part of the final shape assembly and thus needs to
be removed. Assembly of σk will continue until we reach such a tile, say t at coordinates
(xt, yt, zt = k − 1). Gadgets will detect that t needs to be removed before a tile, say t′, is
placed in coordinates (xt, yt, zt + 1 = k). When t is detected, σk will be assembled up to the
location of t′ meaning that there will be a tile in every location of σk below y coordinate yt

as well as all locations at y coordinate yt to either the left or right of t′ depending on the
parity of the y coordinate in the zig-zag growth procedure for σk.

To ensure that the detachment of t does not cause any other tiles to detach, we must
look at all neighbors of t in the assembly. 1 of these neighbors will be t′ itself and this tile
will be attached to all of its neighbors in σk so we don’t have to consider that one. If t has a
neighboring tile in slice σk−2, then notice that this tile must (1) be a tile belonging to the
final shape assembly since it was not removed during the assembly of slice σk−1, and (2)
have at least 1 other neighboring tile in σk−2 or σk−3 to which it is attached since otherwise
the shape being encoded would have disconnected parts which we don’t allow. Therefore,
the removal of t would not cause this tile to detach.

We now consider the 4 potential neighbors of t in the slice σk−1. For the neighbor below
t, say t−y, we again note that, because shape s cannot have any disconnected components,
t−y must have at least one neighbor other than t which is part of the final shape assembly.
Because the current slice σk has grown up to the y coordinate of t, any such neighbor of
t−y must already exist in the assembly is attached to t−y with strength 2. Therefore, the
removal of t will not cause t−y to detach.

Now consider the neighbors of t with the same y and z coordinates, call these t−x and
t+x. Notice that because slices are grown in a zig-zag manner, the growth of the current
slice σk will be such that one of these already has a neighboring tile in σk and one does
not. Without loss of generality, suppose that at the current row of slice σk attachments are
happening from the −x direction to the +x direction so that t−x already has a neighbor
in σk and t+x does not. Because any neighbor of t−x that exists must have been placed
by now, the detachment of t will not cause t−x to detach for the same reason as t−y. Now,
For t+x it may be the case its only neighbor that is part of the final shape assembly is in
slice σk and has not yet attached. Still notice that because σk has not yet finished growth,
no tiles have yet been removed from σk−1 with a y coordinate greater than ty. This means
that t+x still has neighboring tiles to which it is attached. This is even true if ty is at the
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top of the slice since the base contains a ceiling above the assembly to which the tiles are
attached. Therefore, even if t is removed, t+x will remain attached to the assembly. The
same argument applies to t+y, the neighbor above t.

By the assembly procedure up to this point, it is therefore safe to remove tile t, place t′
and continue with the assembly of slice σk. Since this holds for any tile which needs to be
removed from slice σk−1, the assembly of σk will complete without any tiles that are part of
the final shape assembly detaching. J

From here, it’s clear that the assembly of the slices of the shape can complete without
erroneous detachment. Since all tiles that are part of the final shape assembly have been
added during the slice construction and since all tiles which are not part of the final shape
assembly have been removed from their respective slices, it’s clear that the decoding process
successfully assembles our final shape assembly.

Given the set of input encoding structures Φ = {φ1, . . . , φn}, the STAMR system DΦ =
{D,ΣΦ, τ = 2} produces a set of terminal supertiles S = {s1, . . . , sn} in parallel with a
maximum junk size of 3. DΦ finitely completes, as for the production of the set of shapes
s ∈ S from input encoding structures Φ a finite number of tiles are required for each encoding
structure to produces a terminal assembly. We can guarantee this as each encoding produce
a single terminal shape, as the encoding of the shape dissolves into size 1 junk after the
terminal shape has decoded. By our construction, there are never exposed glues on the
surfaces of any pair of assemblies that each contain an input encoding that would allow them
to bind to each other. Since junk assemblies produced by any assembly sequence are also
unable to negatively interact with other assemblies, a system whose input assemblies have
multiple shapes will behave simply as the union of individual systems which each have one
input assembly shape, creating terminal assemblies of all of (and only) the correct shapes.
This proves Lemma 15.

Now that we have shown the existence of universal encoding and universal decoding
tilesets, we have the basis to demonstrate a universal shape replicator. We generate a new
STAMR tileset R = E ∪D and STAMR system RS = {R,ΣS , τ = 2}, where ΣS consists of
an infinite number of copies of each tile type from R and an infinite number of copies of each
uniformly covered assembly from the set S = {s1, . . . , sn}, whose shapes are any arbitrary
set of shapes.

Recall that during the encoding process, the encoding corner gadget is bound to the
encoding structure while it is being built. Once the entire encoding process finishes and
the corner gadget receives a ’dissolve’ signal, it first activates a glue to signal to the first
tile placed in the encoding structure that it should turn on the initiator glue which is the
glue initially bound to by the tiles of D. Thus, exactly when an encoding of some si, φi,
is completed by the tiles of E, decoding that φi will begin by the tiles of D, resulting in a
terminal assembly with the same shape as si. We make a slight modification to the tile of
the encoding structure that exposes the initiator glue, and the initial decoding tile which
attach to it, the initiator tile. We make two copies of the initiator tile, which we will call
t1 and t2. The first, t1, will bind to the initiator glue and cause the decoding process to
proceed exactly as before. However, when the original initiator tile would have detected
completion of the decoding process and sent a ‘dissolve’ signal to the first tile of the encoding
structure, t1 instead sends a signal that tells that tile to activate a glue that will allow t2 to
attach, and then t1 will detach. This will effectively cause the encoding to produce a decoded
structure and then have all of the ‘helper’ tiles dissolve, leaving the encoding structure able
to bind to t2 which then initiates the regular decoding process, and when it receives the
signal telling it that has completed, t2 does pass the ‘dissolve’ signal to the first tile of the
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encoding structure. In this way, each encoding structure causes two copies of the decoded
assembly to be produced, and then dissolves.

By our construction, the only glues required to be shared between the two tilesets are
the glues encoding 1 and 0 on the encoding structure, and the previously mentioned glues on
the encoded assembly which initiate the decoding process. The glues for 0/1 are shared by
multiple tiles in both E and D. All tiles in D which have the the 0/1 glue (or its complement)
are required to be placed by cooperation with a non 0/1 glue. Additionally, each tile in D has
at most one face which contains strength 1 0/1 glue. Since no other glues are shared between
E and D it is not possible for strength 2 binding to occur between (super)tiles in E and D
aside from the binding of φ with the initiator tiles of D. Since junk assemblies produced by
any assembly sequence are also unable to negatively interact with other assemblies, a system
whose input assemblies have multiple shapes will behave simply as the union of individual
systems which each have one input assembly shape, creating terminal assemblies of all of
(and only) the correct shapes.

The maximal junk size of R is 4, driven by the junk size of E. We can say that RS finitely
completes with respect to the set of assemblies created from the shape tiles of D in the shape
of each assembly in S, as the tileset R operates such that any input shape si is encoded
into an intermediate structure φi, φi is then decoded into two copies of s′i, an assembly
which contains tiles in the exact same locations as s (up to rotation and translation). As
deconstruction leads to the production of a single structure φi, and φi is only able to be
decoded to s′i two times, we can place a finite bound on the number of each tile type required
to produce each terminal assembly s′. (This largely follows from the fact that encoding
systems using E finitely complete with respect to the set of encoding assemblies, and that
decoding systems using D finitely complete with respect to the set of assemblies whose shapes
are encoded.) Therefore, R also finitely completes, with respect to the set of assemblies with
the same shape as the input assemblies, and Theorem 13 is proven.

Note that the condition that a single encoding structure φi leads to the production of
exactly two target assemblies s′i is imposed to allow for the universal shape replicator to
technically be able to replicate shapes from an arbitrarily large set of input assembly shapes
without the potential to ‘starve’ the encodings of one shape so that they never produce
decoded copies (and thus the replicator would not finitely complete with respect to the full
set of terminal assembly shapes). If only one input assembly shape was provided as input, it
would instead be possible to just remove the dissolve signals from the encoding structure and
allow each to initiate the production of an unbounded number of decoded copies. It would
also be trivial to add tiles that make copies of the encoded structures that can each initiate
the decoding process, leading to exponential replication.

4 Universal Shape Encoding, Decoding, and Replication in the STAM

As previously mentioned, our use of the STAMR instead of the standard STAM for the
previous results was intended to allow for the input assemblies to be more generic. That
is, a single uniform glue can cover their entire surfaces rather than having glues that are
direction specific, which is implicitly the case with glues in the STAM (as well as the aTAM
and 2HAM, as commonly defined) since tiles are not allowed to rotate in those models and
therefore glues with complementary labels but in non-opposite directions can’t bind. Giving
tiles the ability to rotate, meaning that glues are not specific to directions, made aspects of
the shape encoding problem more difficult to solve, especially the “leader election” process
to select a corner of the bounding box to be the location of the origin. Nonetheless, the
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constructions can be easily modified to work in the STAM. To do this we can simply define
rotated versions of each of our tiles, one for each of the 24 possible rotations. The behavior
of these tiles will be identical to the behavior of the tiles in the STAMR which can easily be
seen by forming the trivial bijection between individual tiles in the STAM tileset and rotated
instances of those tiles in the STAMR tileset. This induces a bijection between assemblies
formed by the tiles in both, and this bijection clearly preserves the dynamics of the system
as any binding of assemblies possible in one corresponds to a binding of the corresponding
assemblies in the other. Thus we have an isomorphism between our systems defined on these
tilesets with the same input shape assemblies. Additionally, the leader election process is
essentially unnecessary in the STAM version with rotated tiles since we could just choose
say the top, northeastern most tile of the bounding box assembly as leader once the filler
verification has finished. In principle, despite the STAM tileset requiring many rotated copies
of the tiles necessary for the bounding box construction, we wouldn’t need rotated copies of
any other tiles if the same corner was always elected leader.

Also, it can be argued that the STAMR is in a sense more physically realizable than
the STAM if only for the fact that the STAM requires glues to implicitly encode their
orientations. When implementing tiles physically using DNA, where glues are often made
of single stranded DNA exposed on the sides of some more rigid DNA structure, several
copies of each glue (often one for each of the 6 directions) are needed. Because there are only
so many fixed length sequences of nucleotides, requiring that several sequences correspond
to the same glue is expensive. This is not only because those sequences can no longer be
used for different glues, but also because several similar sequences become unusable as glue
sequences must be sufficiently orthogonal to mitigate erroneous binding. Consequently, our
choice of a non-standard model of tile assembly does not weaken our results, but rather
strengthens them both theoretically and, to some extent, practically.

5 Beyond Shape Replication

The constructions used to prove Theorem 13 were intentionally broken into separate, modular
constructions proving Lemmas 14 and 15 and thus providing a universal shape encoder and
a universal shape decoder. This is not only useful for proving their correctness, but also for
allowing for computational transformations to be performed on the encodings of input shapes
in order to instead produce output shapes based on those transformations. Like even the
much simpler aTAM, the STAM (and STAMR) are Turing universal, meaning any arbitrary
computer program can be executed by systems in these models. Thus, given any program
that can perform a computational transformation of the points of a shape and output points
of another shape, tiles that execute that program (for instance, by simulating an arbitrary
Turing machine in standard ways, e.g. [25, 18]) can receive as input the binary encodings
of arbitrary shapes (after their creation by the universal encoder), transform them in any
algorithmic manner, and then assemblies of the shapes output by those transformations can
be produced (using the universal shape decoder).

Due to space constraints, we don’t go into great detail about the opportunities that such
constructions provide. Instead, we mention just a few of the possibilities (and depict some in
Figure 76) while noting that the possibilities are technically infinite:

1. Scaled shapes: a system could be designed to produce assemblies that have the shapes of
input assemblies scaled by either a built-in constant factor (including negative, to shrink
the shapes), or instead with another type of input assembly that specifies the scaling
factor, allowing for a “universal scaler”.
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(a) (b) (c)

Figure 76 (a) An example shape, (b) The same shape at scale factor 2, (c) A shape which is
complementary to the top surface of the shape in (a).

2. Inverse shapes: a system could be designed to produce assemblies that have the inverse, i.e.
complementary, shapes of the input assemblies (assuming the complements are connected,
and restricting to some bounding box size since the complement of any finite shape is
infinite).

3. Pattern matching: a system could be designed to inspect input assembly shapes for
specific patterns and to either produce assemblies that signal the presence of a target
pattern, or instead assemblies that are complementary to, and can bind to, the surfaces
of assemblies containing those patterns.

Although such constructions are highly theoretical and quite complex, and thus unlikely in
their current forms to be practically implementable, they provide a mathematical foundation
for the construction of complex, dynamic systems that mimic biological systems. One possible
example is an “artificial immune system” capable of inspecting surfaces, detecting those
which match (or fail to match) specific patterns, and creating assemblies capable of binding
to those deemed to be foreign, harmful, or otherwise targeted. As mentioned, there are
infinite possibilities.

6 Impossibility of Shape Replication Without Deconstruction

In this section, we prove that in order for a system in the STAMR to encode and/or replicate
shapes which have enclosed or bent cavities (see Definitions 4 and 5), the input assemblies
must have the potential for tiles to be removed. To do so, we first utilize a theorem from [2].

I Theorem 4 (from [2]). Let U be an STAM* tileset such that for an arbitrary 3D shape S,
the STAM* system T = (U, σS , τ) with dom σS = S, T is a shape self-replicator for S and
σS is non-porous. Then, for any r ∈ N, there exists a shape S such that T must remove at
least r tiles from the seed assembly σS.

Theorem 4 from [2] applies to the STAM*. However, the STAMR is simply a restricted
version of the STAM* which only allows tiles to be a single shape, that of a unit cube, and
which does not allow flexible glues. Since all assemblies in the STAMR are non-porous (i.e.
free tiles cannot pass through the tiles of an assembly or the gaps between bound tiles) and
the STAMR has more restrictive dynamics than the STAM*, the proof of this impossibility
result, which shows the impossibility of self-replicating assemblies with enclosed cavities
without removing tiles, suffices to prove the following corollary (stated using the terminology
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of this paper) as well.2 Note that this proof holds even if the input assemblies are not
uniformly covered.

I Corollary 17. There exist neither a universal shape encoder nor a universal shape replicator
in the STAMR for the class of shapes with enclosed cavities whose assemblies are not
deconstructable.

(a) (b)
(c) (d)

Figure 77 (a) and (b) Partial depictions of a pair of shapes which cannot be correctly en-
coded/replicated without a deconstructable input assembly. Each consists of a 5× 5× 4 cube with a
4-cube-long bent cavity. For each, the green, purple, blue, and yellow locations indicate the empty
locations that make the bent cavity. The rest of the 5× 5× 4 cube locations would be filled in with
red cubes (some have been omitted to make the cavity locations visible). (c) and (d) The shapes of
assemblies that could grow into the bent cavities.

Our next theorem deals with shapes having bent cavities.

I Theorem 18. There exist neither a universal shape encoder nor a universal shape replicator
in the STAMR for the class of shapes with bent cavities whose input assemblies are uniformly
covered but are not deconstructable.

We prove Theorem 18 by contradiction. Therefore, let fe be a shape encoding function
and assume E is a universal shape encoder with respect to fe, and let c be the constant
value which bounds the size of the junk assemblies. (Nearly identical arguments will hold
for a universal shape replicator.) Define the shapes s1 and s2 as shown in Figures 77a and
77b, i.e. each is a 5× 5× 4 cube with a bent cavity that goes into the cube to a depth of 3,
then turns one of two directions for each. Note importantly that the well is offset from the
center of the cube such that s1 and s2 are not rotationally equivalent. Since E is assumed
to be a universal shape encoder, there must exist two STAMR systems E1 = (E, σ1, τ) and
E2 = (E, σ2, τ), where σ1 consists of infinite copies of tiles from E and infinite copies of
uniformly covered assemblies in the shape of s1, and σ2 consists of infinite copies of tiles
from E and infinite copies of uniformly covered assemblies in the shape of s2.
E1 must produce terminal assemblies which encode shape s1 but must not produce

terminal assemblies which encode shape s2, since no assembly of shape s2 is included in its
input assemblies. Similarly, E2 must produce terminal assemblies which encode shape s2 but
not s1. Let ~α be an assembly sequence in E1 which results in a terminal assembly encoding
shape s1. We now show that every action of ~α must be valid, in the same ordering, in E2 but
using an input assembly of shape s2. This is because the exact same glues will be exposed
by the input assemblies of shapes s1 and s2 in the same relative locations with the slight
difference of relative rotations of the innermost locations of the bent cavities of each from
the adjacent cavity locations. Assuming that, in ~α, tiles attach into all locations of the bent

2 The proof can be found in [2], and we omit duplicating it here due to space constraints.
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cavity (if only the location shown in yellow remains empty the same argument will hold, and
if both the locations shown in yellow and blue remain empty then there is absolutely no
difference in any aspect of the assembly sequence in E2 and the argument immediately holds),
this results only in the relative orientations of at most the bottom two tiles being turned 90
degrees relative to the tile immediately above them (i.e. the tile in the purple location in
Figure 77). Since tiles in the STAMR are rotatable, with no distinction for directions, there
is no mechanism for tiles in the purple locations of assemblies shown in Figures 77c and 77d
from distinguishing from each other (via tile types, glues, or signals). Tiles of the same types
which bind into those locations in ~α must also be able to do so in the assembly sequence of
E2 using the exact same glues and firing the exact same signals (if any). Thus ~α must be a
valid assembly sequence in E2 as well. This means that an assembly encoding the shape of
s1 is also created as a terminal assembly in E2. Note that if the constant c is greater than
the size of the shapes s1 and s2 (i.e. 5 ∗ 5 ∗ 4− 4 = 96), then we can simply increase their
dimensions until they are larger than c (but still contain the same bent cavities) and the
argument still holds and the incorrectly produced assemblies cannot be considered “junk”
assemblies. This is a contradiction that E is a universal shape encoder with respect to fe

and constant c. Since no assumptions were made about E other than it being a universal
shape encoder, no such E can exist. By slightly altering the argument for a universal shape
replicator R (instead of universal encoder E) and generating terminal assemblies of shapes
s1 and s2 (rather than assemblies encoding those shapes), the same argument holds to show
that no universal shape replicator exists, and thus Theorem 18 is proven.
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