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Abstract. In this paper, we study the complexity of self-assembly under models that are natural
generalizations of the tile self-assembly model. In particular, we extend Rothemund and Winfree’s
study of the tile complexity of tile self-assembly [9]. They provided a lower bound of Ω( log N

log log N
)

on the tile complexity of assembling an N × N square for almost all N . Adleman et al. [1] gave a
construction which achieves this bound. We consider whether the tile complexity for self-assembly
can be reduced through several natural generalizations of the model. One of our results is a tile set
of size O(

√
log N) which assembles an N ×N square in a model which allows flexible glue strength

between non-equal glues. This result is matched for almost all N by a lower bound dictated by
Kolmogorov complexity. For three other generalizations, we show that the Ω( log N

log log N
) lower bound

applies to N ×N squares. At the same time, we demonstrate that there are some other shapes for
which these generalizations allow reduced tile sets. Specifically, for thin rectangles with length N

and width k, we provide a tighter lower bound of Ω(N
1
k

k
) for the standard model, yet we also give a

construction which achieves O( log N
log log N

) complexity in a model in which the temperature of the tile

system is adjusted during assembly. We also investigate the problem of verifying whether a given
tile system uniquely assembles into a given shape; we show that this problem is NP-hard for three
of the generalized models.
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1. Introduction. Self-assembly is the ubiquitous process by which objects au-
tonomously assemble into complexes. This phenomenon is common in nature and
yet is poorly understood from a mathematical perspective. It is believed that self-
assembly technology will ultimately permit the precise fabrication of complex nanos-
tructures. Of particular interest is DNA self-assembly. Double and triple crossover
DNA molecules have been designed that can act as four-sided building blocks for
DNA self-assembly [4, 5]. Experimental work has been done to show the effectiveness
of using these building blocks to assemble DNA crystals and perform DNA compu-
tation [6, 8, 12, 13]. With these building blocks (tiles) in mind, researchers have
considered the power of the tile self-assembly model.
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The tile assembly model extends the theory of Wang tilings of the plane [10] by
adding a natural mechanism for growth. Informally, the model consists of a set of four
sided Wang tiles whose sides are each associated with a type of glue. The bonding
strength between any two glues is determined by a glue function. A special tile in
the tile set is denoted as the seed tile. Assembly takes place by starting with the
seed tile and attaching copies of tiles from the tile set one by one to the growing seed
whenever the total strength of attraction from the glue function meets or exceeds a
fixed parameter called the temperature.

In this paper we focus on two fundamental complexities relating to this model.
The first is the tile complexity of self-assembled shapes, defined as the minimum num-
ber of distinct Wang tiles required to assemble the shape. Rothemund and Winfree [9]
introduced this concept and considered the tile complexity of self-assembled squares.
The second is the complexity of verifying whether or not a system of tiles uniquely
assembles into a given shape. This problem is considered by Adleman et al. [2] and
shown to have a polynomial time solution for the standard tile assembly model.

We extend these studies of tile complexity and shape verification by considering
the removal of various restrictions the standard model places on the assembly pro-
cess. From this we obtain four natural generalizations of the tile assembly model that
exhibit significant differences in tile complexity and the complexity of shape verifi-
cation from that of the standard model. This suggests that some previously derived
bounds on tile self-assembly are artifacts of artificial restrictions placed on the stan-
dard tile assembly model, rather than bounds on the actual process of self-assembly.
Informally, the generalized models are defined as follows.

In the flexible glue model, the restriction imposed by Rothemund and Winfree [9]
that differing glue types have bonding strength of zero is removed. In the multiple
temperature model, the temperature of the system is permitted to change during the
assembly process. In the multiple tile model, tiles may cooperate by assembling into
supertiles before being added to the growing result. In the unique shape model, a
system uniquely assembles a shape if the shape of its resultant supertiles is unique,
though its produced supertile may not be unique.

In the standard tile assembly model, Kolmogorov complexity dictates a lower
bound of Ω( log N

log log N ) on the tile complexity of self-assembling N × N squares for
almost all values of N [9]. Adleman et al. [1] showed how to reach this bound for
all N . We show (in Theorem 6.1) that this lower bound also applies to each of the
generalized models except for the flexible glue model. For this model, Kolmogorov
complexity only dictates an Ω(

√
log N) lower bound for almost all N (as shown in

Theorem 6.2). We show how to achieve this bound for all N by encoding an arbitrary
(log N)-bit binary number into the glue function (Theorem 5.1).

Additionally, for some of the models we provide a lower bound of Ω(N
1
k

k ) (see
Theorem 3.1) for assembling thin width k, length N rectangles (a k × N rectangle
is thin if k < log N

log log N−log log log N ). These lower bounds show that it can require
significantly larger tile sets to assemble thinner rectangles than thicker rectangles.
With this in mind, we utilize the multiple temperature model to construct a thin
rectangle by first constructing a thicker rectangle using a small tile set. We then
raise the temperature of the system so that portions of the larger rectangle fall apart,
leaving the desired rectangle (Theorem 4.1).

Given a tile system, Adleman et al. [2] give an algorithm to verify whether the
tile system uniquely assembles into a given supertile. However, in the unique shape
model, a tile system could uniquely assemble into a shape even if it does not produce a
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Table 1.1
This table gives the general flavor of our results regarding upper and lower asymptotic bounds

on tile complexity under the generalized models for k × N rectangles, as well as the complexity of
the Unq-Shape problem, but the reader should reference precise details in the stated theorems. A
rectangle is thin when k < log N

log log N−log log log N
and thick otherwise. NP-X denotes the class of

decision problems not in NP or co-NP unless P = NP.

Complexity of Self-Assembling k ×N Rectangles, k ≤ N , and Shape Verification

Thin Rectangles Thick Rectangles Unq-
LB UB LB UB Shape

Standard N
1
k

k
N

1
k

log N
log log N

P

(Thm. 3.1) (Thm. 3.2) (see [9]) (see [1]) (see [2])

Flexible N
1
k

k
N

1
k

√
log N P

Glue (Thm. 3.1) (Thm. 3.2) (Thm. 6.2) (Thm. 5.1) (see [2])

Multiple log N
log log N

log N
log log N

NP-X

Temperature (Thm. 6.1) (Thm. 4.1) (Thm. 6.1) (see [1]) (Thm. 7.6)

Multiple log N
log log N

N
1
k

log N
log log N

NP-X

Tile (Thm. 6.1) (Thm. 3.2) (Thm. 6.1) (see [1]) (Thm. 7.7)

Unique N
1
k

k
N

1
k

log N
log log N

Co-NPC

Shape (Thm. 3.1) (Thm. 3.2) (Thm. 6.1) (see [1]) (Thm. 7.1)

unique supertile. We investigate the problem of verifying whether a given tile system
uniquely assembles into a given shape in the unique shape model, and show that
this problem is co-NP-complete (Theorem 7.1). We also show that the problem of
determining whether a tile system uniquely assembles into a given supertile is not in
NP or co-NP for the multiple temperature model (Theorem 7.6) or the multiple tile
model (Theorem 7.7) unless P = NP. These results are in contrast to the polynomial-
time verification algorithm for the standard model [2].

Paper Layout: In Section 2 the standard tile model is defined as well as the
generalized models. In Section 3 we introduce a construction for assembling k × N
rectangles and provide a lower bound on the tile complexity of such rectangles. In
Section 4 we use this construction to show how the multiple temperature model can
reduce tile complexity when k ¿ N . In Section 5 we use the flexible glue model to re-
duce the tile-complexity of assembling N×N squares from Θ( log N

log log N ) to Θ(
√

log N).
In Section 6 we discuss the lower bounds for assembling shapes of extent N for the
generalized models as dictated by Kolmogorov complexity. Finally, in Section 7, we
show that shape verification is co-NP-complete in the unique shape model and not in
NP or co-NP unless P = NP for the multiple temperature and multiple tile models.

2. Basics.

2.1. The Standard Model. For alternate descriptions of the tile assembly
model, see [1, 2, 9, 11]. Briefly, a tile t in the model is a four sided Wang tile
denoted by the ordered quadruple (north(t), east(t), south(t), west(t)). The entries of
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the quadruples are glue types taken from an alphabet Σ representing the north, east,
south, and west edges of the Wang tile, respectively. A tile system is an ordered
quadruple 〈T, s,G, τ〉 where T is a set of tiles called the tileset of the system, τ is
a positive integer called the temperature of the system, s ∈ T is a single tile called
the seed tile, and G is a function from Σ2 to {0, 1, . . . , τ} called the glue function of
the system. It is assumed that G(x, y) = G(y, x), and there exists a null in Σ such
that ∀x ∈ Σ, G(null, x) = 0. In the standard tile assembly model [1, 2, 9], the glue
function is such that G(x, y) = 0 when x 6= y. When dealing with the standard glue
model, denote G(x, x) by G(x).

Define a configuration to be a mapping from Z2 to T
⋃ {empty}, where empty

is a special tile that has the null glue on each of its four edges. The shape of a
configuration is defined as the set of positions (i, j) that do not map to the empty
tile. For a configuration C a tile t ∈ T is said to be attachable at the position (i, j) if
C(i, j) = empty and G(north(t), south(C(i, j + 1))) + G(east(t), west(C(i + 1, j))) +
G(south(t),north(C(i, j − 1))) + G(west(t), east(C(i− 1, j))) ≥ τ . For configurations
C and C ′ such that C(x, y) = empty, C ′(i, j) = C(i, j) for all (i, j) 6= (x, y), and
C ′(x, y) = t for some t ∈ T , define the act of attaching tile t to C at position (x, y)
as the transformation from configuration C to C ′.

Define the adjacency graph of a configuration C as follows. Let the set of vertices
be the set of coordinates (i, j) such that C(i, j) is not empty. Let there be an edge
between vertices (x1, y1) and (x2, y2) iff |x1 − x2| + |y1 − y2| = 1. We refer to a
configuration whose adjacency graph is finite and connected as a supertile. For a
supertile S, denote the number of non-empty positions (tiles) in the supertile by
size(S). We also note that each tile t ∈ T can be thought of as denoting the unique
supertile that maps position (0, 0) to t and all other positions to empty. Throughout
this paper we will informally refer to tiles as being supertiles.

A cut of a supertile is a cut of the adjacency graph of the supertile. In addition, for
each edge ei in a cut define the edge strength si of ei to be the glue strength (from the
glue function) of the glues on the abutting edges of the adjacent tiles corresponding
to ei. Now define the cut strength of a cut c to be

∑
si for each edge ei in the cut.

In the standard model, assembly takes place by growing a supertile starting with
tile s at position (0, 0). Any t ∈ T that is attachable at some position (i, j) may attach
and thus increase the size of the supertile. For a given tile system, any supertile that
can be obtained by starting with the seed and attaching arbitrary attachable tiles is
said to be produced. If this process comes to a point at which no tiles in T can be
added, the resultant supertile is said to be terminally produced. For a given shape
Υ, a tile system Γ uniquely produces shape Υ if there exists a terminal supertile S of
shape Υ such that every supertile derived from the seed can be grown into S. The
tile complexity of a shape Υ is the minimum tile set size required to uniquely assemble
Υ under a given assembly model. While the definition of unique shape production
provided here is the same as in [1, 2, 9], we note that it is somewhat unnatural in
that it requires unique production of supertiles. In section 2.2 we introduce a model
that utilizes a more natural definition of unique shape production.

2.2. Four Generalized Models.

The Multiple Temperature Model. In the multiple temperature model, the inte-
ger temperature τ in the tile system description is replaced with a sequence of integers
{τi}k

i=1 called the temperature sequence of the system. A system with k temperatures
in its temperature sequence is said to be a k-temperature system.
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In a k-temperature system, assembly takes place in k phases. In the first phase,
assembly takes place as in the standard model under temperature τ1. Phase 1 contin-
ues until no tiles can be added. In phase two, tiles can be added or removed under τ2.
Specifically, at any point during phase 2 if there exists a cut of the resultant supertile
with cut strength less than τ2, the portion of the supertile occurring on the side of
the cut not containing the seed tile may be removed. Also, at any point in the second
phase any tile in T may be added to the supertile if the tile is attachable at a given
position under temperature τ2. The second phase of this assembly continues until no
tiles can be added or removed. We then go to phase 3 in which tiles may be added
and removed under temperature τ3. The process is continued up through τk. For
any given choice of additions and removals such that each of the k phases finishes,
the tile system terminally produces the corresponding shape assembled after phase k.
If the k phases always finish regardless of the choice of additions and removals, and
the terminally produced supertile R is unique, the tile system uniquely assembles the
shape of R under the k-temperature model.

The Flexible Glue Model. In the flexible glue model, the restriction that G(x, y) =
0 for x 6= y is removed.

The Unique Shape Model. In the unique shape model, we redefine what is meant
for a system to uniquely produce a shape S. In this model, a tile system uniquely
produces a shape S iff all producible supertiles can be grown into a terminal supertile
with shape S. Thus, the system may produce many different terminal supertiles as
long as they all have the desired shape.

The Multiple Tile Model. In the multiple tile model with parameter q, tiles
can combine into supertiles of size at most q before being added to the growing seed
supertile. Attaching a supertile is much like attaching a singleton tile. Intuitively,
two supertiles attach to one another by abutting together and sticking if the total
edge strength of the abutting edges meets or exceeds the temperature τ . However,
the formal definition of a supertile is a connected configuration of tiles on Z2. This
definition makes a distinction between two supertiles that are equal up to translation.
But, we actually wish to think of two such supertiles as the same supertile. We there-
fore use the following formal definition of supertile attachment which generalizes the
notion of singleton tile attachment.

For any two supertiles A and B, define A ⊕ B to be the configuration obtained
by setting all empty positions A(i, j) equal to B(i, j). Further, we say A⊕B is valid
if it is a supertile (i.e., it is connected), and if for all (i, j) either A(i, j) = empty or
B(i, j) = empty. For a valid supertile A⊕B, denote the cut defined by separating all
the tile positions initially in A from all the tile positions initially in B as the border
cut. For a supertile A and integers x and y, let Ax,y denote the configuration obtained
by translating A by x units along the x-axis and y units along the y-axis. Finally, for
a given temperature τ , supertile B can be attached to supertile A to form supertile
A⊕Bx,y if A⊕Bx,y is valid and the cut strength of the border of A⊕Bx,y is at least
τ .

Having defined how to attach supertiles, we now define multiple tile systems. A
tile system in the multiple tile model is a quintuple 〈T, s, G, τ, q〉. Intuitively, in a
multiple tile system any supertile of size at most q that can be obtained by combining
two smaller addable supertiles is also an addable supertile. The assembly process
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then permits any addable supertile to attach to the growing seed supertile if the tile
can be placed so that the abutting edges of the two supertiles have a total strength
that meets or exceeds the temperature τ . For such a system define a set of addable
supertiles WT as follows: First, T ⊆ WT . Second, if there exists A,B ∈ WT such that
size(A) + size(B) ≤ q, and B can be attached to A under temperature τ to obtain
A⊕Bx,y, then A⊕Bx,y is also in WT . In the multiple tile assembly model, supertiles
from the set WT may be added as well as from T . Specifically, any supertile that
is in the set of addable supertiles WT that is attachable to the seed supertile under
temperature τ can attach and increase the size of the seed supertile. For q = 1, we
have WT = T , which gives us the standard model of assembly.

3. The Assembly of k × N Rectangles. In this section, we present both an
upper and lower bound for assembling k ×N rectangles for arbitrary k and N . The
upper bound comes from a simple construction which constitutes a k-digit, base-N

1
k

counter and has tile complexity Θ(N
1
k + k). In later sections, we use modifications

of this counter to show how both the 2-temperature and flexible glue model can
reduce tile complexity of certain shapes. Additionally, for the case of k = log N , this
construction constitutes a log N -bit, base-2 counter which assembles a log N×N block.
The tile set created by this special case is used in [3] to assemble a log N ×N block
in optimal time complexity (as defined in [1]) of Θ(N). This permits the assembly of
N ×N squares in optimal tile complexity and optimal time complexity as in [1], but
does so in a much simpler fashion and uses only temperature τ = 2.

Theorem 3.1. The tile complexity of self-assembling a k×N rectangle is Ω(N
1
k

k )
for the standard model, the unique shape model, and the flexible glue model.

Proof. Suppose there exists a tile system with fewer than ( N
2(k!) )

1
k distinct tile

types, which uniquely assembles a k × N rectangle. Then there must be fewer than
N

2(k!) distinct k tile columns consisting of these tiles. So in a k × N configuration,
there must exist some k-tile sequence which is repeated for more than 2(k!) of the
columns. And under the standard, unique shape, and flexible glue models, for each of
these identical columns we can assign an ordering on the k tiles that corresponds to a
possible relative order in which the k tiles of the given column could be attached (in
the multiple tile model, groups of tiles may be attached simultaneously, and thus this
ordering is not sufficient). Since there are at most k! orderings possible, we get that at
least 3 of the identical columns must also have an identical order of attachment. From
this we derive a contradiction as follows. Wherever the seed tile of the construction
occurs, it lies to either the west or east of two of the identically placed columns. And
if the seed tile occurs to the west (respectively east) of a column, then all tiles east
(respectively west) of the column are determined by (1) the tiles and their positions
in the column, and (2) the relative attachment order of the tiles in the column. That

is, if a rectangle has fewer than ( N
2(k!) )

1
k = Ω(N

1
k

k ) distinct tile types, there necessarily
are at least two identical columns east (respectively west) of the seed tile whose order
of attachment is the same. When attaching only a single tile at a time, this guarantees
the possibility of producing an infinite repeating loop of tiles. Thus, no finite shape
can be uniquely produced.

Remark. We also point out that the argument for Theorem 3.1 applies to any
length N shape whose height at each column is bounded by a value k.

Theorem 3.2. The tile complexity of self-assembling a k × N rectangle is
O(N

1
k + k) for the standard model, the unique shape model, and the multiple tile

model. We show this by first providing a construction for the standard model and
6



Fig. 3.1. This tile set assembles a k × mk rectangle in Θ(k + m) tile complexity under the
standard assembly model.

then arguing that the construction works for the unique shape model and the multiple
tile model as well.

Proof for the Standard Model. For a given N , let m = dN 1
k e. To show this bound,

we give a general tile set to assemble a k×mk rectangle in O(N
1
k + k) tiles under the

standard model. We then show how to adjust the tile set so it produces a k×N rect-
angle. The tile system we use constitutes a k-digit base-m counter. The system has
temperature τ = 2 and the tile set and glue strength function are given in Figure 3.1.

The assembly takes place as follows. The north edge of the seed tile produces a
length k seed column from the seed column tiles. The west edge of the seed produces
a length m chain from the chain tiles. The 0-normal tile can then fill in all the rows
and columns up until column m − 1. In this column the HP

1 hairpin tile must be
placed. This causes a hairpin growth which causes another length m chain of chain
tiles to be placed in the first row. The next section of m columns are then filled with
the 0-normal tile in all rows but the second, which will contain the 1-normal tile or
a hairpin tile. In general, when the Cm−1 chain tile is placed, probe tiles are added
on top of each other until a row is found that does not consist of the (m− 1)-normal
tile. In such a row the appropriate pair of hairpin tiles are placed and a downward
growing column of return probe tiles are placed until the bottom row is encountered,
at which point the C0 chain tile is placed to start the length m chain growth over
again in the first row. If no such row is encountered, the assembly finishes. The idea
here is that the bottom chain row represents the least significant digit of the counter,
thus incrementing every column. After each block of m we need to find the most
significant digit that requires incrementation, as well as rollover all the trailing digits
displaying m− 1 to 0. The hairpin tiles perform the incrementation, while the probe
and return probe tiles perform the rollover.

It is easy to see that for a given k and m, this construction assembles into a k×mk
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block. In addition, we can adjust the glue types of the west edges of the seed column
and seed tiles to represent any k-digit, base-m number. By doing this the counter can
be made to start at any number between 0 and mk − 1. Thus, we can designate the
length of the constructed shape to be any number between 1 and mk. Therefore, to
assemble a k×N block, we use the above tile set with m = dN 1

k e and the west edges
of the seed and seed columns tiles set to represent the number mk−N . Thus, we can
construct a k ×N block in 4m + k = O(N

1
k + k) tiles. ¤

Proof for the Unique Shape Model. This follows from the construction for the stan-
dard model. ¤

Proof for the Multiple Tile Model. Now we argue that the tile set given for the
standard model uniquely assembles a k × N rectangle for the multiple tile model as
well. Let A denote the uniquely produced k×N supertile from the tile set of Figure 3.1
under the standard model. From the proof for the standard model we have that A
is produced under the multiple tile model as well. We thus need to show that the
multiple tile model will not produce any shape other than A. Denote any produced
supertile under the standard model to be a substructure of A. We thus want to show
that any supertile produced by a multiple tile model is a substructure of A.

To show this, consider a multiple tile system with tile set given in Figure 3.1.
Consider the set W of addable supertiles and the set X ⊂ W of supertiles that do
not contain the seed tile. For a given x ∈ X, denote x as a column if it consists of
only a column of seed column tiles, a chain if it consists of only a chain of chain tiles,
a hairpin if it consists of exactly two hairpin tiles, and a singleton if x ∈ T . For our
argument we show the following three claims:

Claim 1: Every supertile in the set X is either a column, chain, hairpin, or singleton.
Claim 2: Attaching a column, chain, hairpin, or singleton to a substructure yields a

new substructure.
Claim 3: Two substructures cannot be attached to one another.

From this we have that by starting off with a single seed tile, which is a substructure,
only supertiles that preserve the substructure property may be added. Thus, the mul-
tiple tile model can only produce substructures, and thus cannot produce anything
the standard model cannot produce. ¤

Proof of Claim 1. Clearly all supertiles in X of size 1 can be classified as either
a chain, column, hairpin, or singleton. (They are all singletons, some are chains,
some are columns, none are hairpins). Inductively, suppose all supertiles in X of size
less than k can be classified into the above categories. Consider an arbitrary size k
supertile in X. By definition of W the supertile must be composed of two smaller
supertiles. However, we cannot combine a chain with a column, nor a chain with a
hairpin, nor a column with a hairpin. And clearly, if a singleton can be added to some
other chain, column, hairpin, or singleton, it must yield a column, chain, or hairpin.
Similarly, when two chains are combined, they yield another chain, and when two
columns are combined, they yield another column. Thus, the size k supertile is either
a chain, column, or hairpin. ¤

Proof of Claim 2. If a column is attachable to a substructure, it is attachable solely
due to the glue strength of the south glue on the southern most tile of the column.
Instead of placing the column as a single chunk, each tile can be placed one by one
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under the standard model, starting with the southernmost tile. Thus, the end result
is a substructure. The same type of argument applies to chains and hairpins. ¤

Proof of Claim 3. Among the tiles in an arbitrary substructure, no tile is farther
north than the northern most tile in the east most column. Similarly, no tile is far-
ther west than the west most tile in the southern most row, except for possibly a
single hairpin tile. Now, since the eastern edges of all tiles in the first column and the
southern edges of all tiles in the first row have bonding strength of 0, the only possible
way for two substructures to bond together is for there to be an attraction between
the north edge of some tile in the first column of one substructure with the south
edge of a hairpin tile of the other substructure. But there is no attraction strength
between the northern edges of seed column tiles and the southern edges of hairpin
tiles, so this is not possible. ¤

Fig. 3.2. A tile set to assemble a k ×N rectangle in Θ(j + m) tile complexity for m = dN 1
j e

under the 2-temperature model with τ1 = 4 and τ2 = 6. At temperature τ1 the shaded tiles fill in
the bottom k rows of a j ×N rectangle while the clear tiles fill the top j − k rows. At temperature
τ2 the clear tiles fall off.
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Fig. 3.3. Here is a typical section of a self-assembled 5×N block from the tile set in Figure 3.2
that will break down to a 2×N block under temperature 6. Edges with strength 4 are marked by 4
adjacent arrows, while edges with strength 1 are marked with 1. All remaining edges have strength 3.

4. Reducing Tile Complexity with the 2-Temperature Model. Now we
show how a multiple temperature model can reduce tile complexity for assembling
thin rectangles. For a given k and N with k ¿ N , the idea is to use a modification of
the construction from Section 3 to build a j × N rectangle for optimal (bigger than
k) j such that the top j− k rows are less stable than the bottom k. The temperature
of the system is then raised to cause all but the bottom k rows to fall apart. We then
compare the complexity of this construction with the lower bound for the standard
model given in Section 3 to show that the 2-temperature model can beat a lower
bound for the standard model.

Minimizing the Complexity.. For a given j and N , assembling a j ×N rectangle
using the construction of Theorem 3.2 yields an upper bound that is a function of
j. If we are only interested in constructing a rectangle of length N but do not care
about the width, we can choose j as a function of N such that the tile complexity is
minimized. To do this we choose a value for j that balances the size of N

1
j and j.

For j = log N
log log N−log log log N = Θ( log N

log log N ), the term N
1
j is log N

log log N . Thus, the number

of tiles used in the construction for building a j ×N block for such a j is j + N
1
j =

Θ( log N
log log N ), which meets the lower bound dictated by Kolmogorov complexity for

almost all N [9]. We use this result in the following theorem.
Theorem 4.1. Under the two-temperature model, the tile complexity of self-

assembling a k ×N rectangle for an arbitrary integer k ≥ 2 is O( log N
log log N ).

Proof. In the case that k exceeds d log N
log log N−log log log N e, we can simply use a single

temperature model to build the two perpendicular axes of the rectangle in optimal
O( log N

log log N ) complexity. The addition of a constant number of tiles can then fill in
the rest of the rectangle. Otherwise, to reach the bound we use a tile system that
assembles a j×N block for optimal value j = d log N

log log N−log log log N e under temperature
τ1 and breaks down to a smaller k×N block in the second phase of the two-temperature
assembly process. As in the construction from Theorem 3.2, let m = dN 1

j e. Consider
the two-temperature tile system with τ1 = 4 and τ2 = 6 and the tile set and glue
strength function given in Figure 3.2.

Under temperature τ1, this tile system assembles a j × N block in exactly the
same fashion as the single temperature system from Theorem 3.2. However, for each
tile in the top j − k rows other than the seed column tiles, the north and south edges

10



Fig. 5.1. This tile set creates a 2 × n block whose top row represents a given n-bit binary
number b. Here bij is the value of the bit in position im + j in b. The glue function for glues g1

i
and gj for i from 0 to m− 1 and j from 1 to m− 2 is G(g1

i , gj) = bij . All other pairs of non-equal
glues have strength 0.

have glue strength 1. Therefore, since no glue in the system exceeds strength 4, we
are assured that any cut consisting of one north-south edge and one east-west edge
has cut strength less than τ2 = 6. Therefore, under the two-temperature model each
tile in the top j − k rows can be removed one at a time, starting at the northwest
corner of the j×N block. We are then left with the bottom k rows. Since our design
ensures that each edge in the bottom k rows has strength 3 or greater, no cut of the
bottom k × N supertile can have cut strength less than 6. Thus, no cut can break
up the remaining k × N block. And since any alternate choice of cuts would only
expedite the process to this end, this construction uniquely assembles a k ×N block
in 10m + j = O(N

1
j + j) = O( log N

log log N ) tile complexity under the two-temperature
assembly model.

For small values of k, this beats the lower bound for the standard model. Consider
k = log N

2 log log N . For such k the value of N
1
k is

N
2 log log N

log N = (log N)2.

Thus, from Theorem 3.1, the lower bound for the standard model is

Ω(
N

1
k

k
) = Ω((log N)(log log N)).

Since this bound only gets higher for smaller values of k, the 2-temperature model
yields an asymptotically smaller tile complexity for all k between 2 and log N

2 log log N .

5. Assembling N ×N Squares in O(
√

log N) Tiles. Kolmogorov complexity
dictates an Ω( log N

log log N ) lower bound for almost all N on the tile complexity of self-
assembling N×N squares for the standard model in which the glue function is limited
so that G(x, y) = 0 for x 6= y. However, if this restriction is lifted, the bound no longer
applies. In this section, we show that the tile complexity of self-assembling N × N
squares is Θ(

√
log N) under the flexible glue model for almost all N .

11



Fig. 5.2. Assembling an arbitrary n-bit binary number in O(
√

n) tiles. Here we show the
construction for n = 36 and binary number b = . . . 0110101110011010.

Theorem 5.1. The tile complexity of self-assembling N×N squares is O(
√

log N)
under the flexible glue model.

Proof. The trick as introduced in [9] is to be able to initialize a fixed length
binary counter to any arbitrary (log N)-bit binary number. This can be done triv-
ially in O(log N) tile complexity. By simulating base conversion, it can be done in
O( log N

log log N ) [1]. Here we provide a tile system that assembles a 2 × log N block in
O(
√

log N) tiles such that the top row of the block encodes a given binary number b.
This is accomplished by taking advantage of the flexible glue function and encoding
b into the glue function. Let n = blog Nc+ 1 and m = d√n e. Let b be a given n-bit
binary number. Let bij be the bit in position im + j in b. We use the tile set and
glue function from Figure 5.1 to construct a 2× n block such that the top row of the
block represents the number b. For convenience we denote some glues by the symbols
0 and 1.

To simplify the illustration, the tile set in Figure 5.1 assumes that m2 = n. If this
is not the case, we can do as before in Theorem 3.2 and initialize the 2-digit counter
to an arbitrary value c so that a block of length exactly n is assembled. At any rate,
the construction uses 5d√n e+1 tiles and constructs a 2×n block in the same fashion
as the general k × n assembly. Additionally, the glue function assures us that for the
(i, j) digit of b, the corresponding position in the top row of the construction can only
be tiled with either a hairpin, seed column, or normal tile with north edge glue equal
to bij .

To complete the N × N square we need to create a fixed length binary counter
that is initialized to the given binary number b and grows north, incrementing row
by row, until 2n is reached. The addition of a constant number of stairstep tiles can
then finish off the square, as shown in [9]. The fixed length binary counter can also be
implemented in a constant number of tiles as is done in [1, 9]. Alternatively, we can
use the construction from Section 3 for building a k × N block for k = log N . This
yields a binary counter consisting of eight tiles plus log N seed column tiles. However,
since we already have a “seed column” via the 2× n seed block, we can omit the seed
column tiles. Thus, the total number of tiles used for the assembly of an N×N square
is only a constant greater than the Θ(

√
log N) tiles used to build the 2×n seed block.

6. Kolmogorov Lower Bounds. Rothemund and Winfree [9] showed that Kol-
mogorov complexity dictates an Ω( log N

log log N ) lower bound on the tile complexity for
self-assembling N ×N squares for almost all N . We show that their proof generalizes
to the multiple temperature model, the unique shape model, and the multiple tile
model. For the flexible glue model, we modify their argument to get an Ω(

√
log N)

lower bound from Kolmogorov complexity, making the construction in Theorem 5.1
tight for almost all N .

12



Theorem 6.1. For almost all N the tile complexity of self-assembling an N ×N
square is Ω( log N

log log N ) for the multiple tile model, the multiple temperature model, and
the unique shape model.

Proof. The Kolmogorov complexity of an integer N with respect to a universal
Turing machine U is KU (N) = min|p| s.t U(p) = bN where bN is the binary repre-
sentation of N . A straightforward application of the pigeonhole principle yields that
KU (N) ≥ dlog Ne−∆ for at least 1− ( 1

2 )∆ of all N (see [7] for results on Kolmogorov
complexity). Thus, for any ε > 0, KU (N) ≥ (1 − ε) log N = Ω(log N) for almost all
N . This tells us that if we had a Turing machine that takes as input a tile system and
outputs the maximum length of the shape produced by the given tile system, then
the total size in bits of the machine plus the size in bits of a tile system that uniquely
assembles an N ×N square is Ω(log N).

For a given assembly model, if there exists a finite size Turing machine that takes
as input a tile system and outputs the maximum extent (i.e. width or length) of
the shape uniquely produced by the system, then the Ω(log N) bound applies to the
number of bits required to represent the tile system. For each of the non-flexible glue
models, let τ be the maximal temperature of the system and n the size of the tile
set. Such tile sets can be represented by 4n log 4n + 4n log τ bits as follows. For each
of the 4n edges in the system assign an index to represent one of the at most 4n
glues of the system. Also record a mapping from each glue to an index from 0 to τ
representing the corresponding strength of the given glue. Thus, for τ bounded by a
constant, the number of bits required to represent a tile system is O(n log n), which
implies that n = Ω( log N

log log N ) for almost all N for any system that self-assembles a
shape with maximum extent N [9].

To finish this argument, we explicitly give algorithms for each model that out-
put the maximum extent of the shape uniquely produced by a given system. For the
standard model, the multiple tile model, and the unique shape model, the following al-
gorithm can output the maximum extent of the shape produced by a given tile system:

Produced-Extent(Γ)
1. Set D1 = T . In general, Di denotes the set of all supertiles of size i which

consist of tiles in T .
2. Mark each t ∈ D1 as FEASIBLE.
3. Set i = 2.
4. Create Di the set of all supertiles of size i. Mark each t ∈ Di as FEASI-

BLE if t can be constructed from two smaller FEASIBLE supertiles from
the set

⋃i−1
r=1 Dr. If t is FEASIBLE and contains the seed tile, mark t as

PRODUCED.
5. Increment i and repeat step 4 unless

⋃i
r= i

2
Dr contains no FEASIBLE super-

tile.
6. Mark each PRODUCED supertile in

⋃i
r=1 Dr as TERMINAL if no FEASI-

BLE supertile can be attached.
7. Output the maximum extent (width or length) of any smallest TERMINAL

supertile in
⋃i

r=1 Dr.

Under the multiple tile model, if there are no addable supertiles of size between
i
2 and i, then we know that there are no addable supertiles of size greater than i,
since such a tile would need to be assembled from at least one smaller supertile of
size at least i

2 . Thus, in the case where each addable supertile is finite, this algorithm
13



will finish and output the correct result. We also note that the algorithm outputs
the extent of the smallest terminally produced supertile for the system. This tells us
that the Kolmogorov bound applies to models with even more general definitions of
uniqueness than what we consider. For the multiple temperature model we have the
following:

k-Temperature-Produced-Extent(Γ)
1. Initialize the current supertile to be the seed tile.
2. For i = 1 to k do the following: If there exists a cut c in the current supertile

with strength(c) < τi, remove the tiles on the side of the cut not containing
the seed. If there exists some x ∈ T such that x is addable under τi, add
x. Continue adding and removing until nothing can be added or removed at
temperature τi.

3. Output the maximum extent of the resultant shape.

Since the definition of the k-temperature model requires that a system that
uniquely produces a shape must, regardless of the sequence of additions and removals,
finish each phase, we are assured that each iteration of the for loop will finish, thus
giving the end result.

Theorem 6.2. For almost all N the tile complexity of self-assembling an N ×N
square is Ω(

√
log N) under the flexible glue model.

Proof. The Produced-Extent algorithm given in Theorem 6.1 for the standard
assembly model works just as well for the flexible glue model. Thus, as discussed in
Theorem 6.1, the number of binary digits required to represent a flexible glue tile
system that self-assembles an N ×N square is bounded below by Ω(log N) for almost
all N . We can represent a flexible glue tile system of size n tiles and temperature τ
bounded by a constant with f(n) = 4n log(4n) + (4n)2 log τ = O(n2) bits as follows.
For each tile there are four sides for which we must denote a glue. We need at most
4n distinct glues, and for each glue we need to store the bonding strength with every
other glue in the model. This can be stored in a 4n× 4n matrix. Now for a given N ,
let β(N) be the cardinality of the minimum tile set for assembling an N ×N square
under the flexible glue model. Then, there exist constants C1 and C2 such that for
almost all N ,

C1 log N ≤ f(β(N)) ≤ C2β(N)2.

So β(N) = Ω(
√

log N) for almost all N .

7. Shape Verification. Given a shape, Adleman et al. [2] studied the problem
of finding the minimum set of tiles which uniquely produces a supertile A, such that A
has the given shape. To show that the decision version of the problem is in NP, they
gave an algorithm to verify whether a given set of tiles uniquely produces a supertile
which has the given shape. In contrast, in this section we show that for the unique
shape, multiple tile, and multiple temperature models this problem is NP-hard. The
problem of shape verification is defined as follows.

Unq-Shape(Γ,M) is the problem of deciding whether the tile system
Γ uniquely assembles into the shape M .

7.1. Unique Shape Model. The algorithm of [2] to verify whether a given set
of tiles uniquely produces a given shape insists that the tile system should assemble
into a unique terminal supertile. Under the unique shape model, a tile system T
uniquely produces a shape if all terminal supertiles of T (henceforth called Term(T))
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have the given shape, and no larger supertiles are produced. We note that this
definition automatically implies that if a tile system uniquely produces a shape, then
Term(T) is non-empty. In this section, we show that the unique shape problem is
co-NP-complete under the unique shape model, in contrast to the standard model.

Theorem 7.1. Unq-Shape is co-NP-complete under the unique shape model. It
remains NP-hard even when the temperature τ = 2.

We begin by showing that Unq-Shape is in co-NP, and then show that it is
NP-hard (and thus co-NP-hard).

Lemma 7.2. Unq-Shape is in co-NP under the unique shape model.
Proof. For this, we need to show that if an instance of Unq-Shape is false, i.e. if

the tile system in the instance does not assemble uniquely into the given shape, then
there is a short proof of the fact. By definition, a given tile system T = 〈T,S, G, τ〉
does not uniquely assemble into the given shape M iff one of the following occurs:

1. A terminal supertile of a shape different from M can be assembled. In this
case, Term(T) contains a supertile A with a shape different from M . Then
A, along with the order in which the tiles join to assemble A would suffice
as a proof. In order to check this proof, we first verify that A can indeed be
assembled by adding the tiles in the order specified. Then we check that A is
a terminal supertile by simply testing whether any tile is attachable at any
of the empty sites adjacent to it.

2. A supertile C of size larger than the given shape can be assembled. Note that
this supertile need not be terminal. We note that if any such C exists, then
there exists such a C with size one larger than M . Such a C, along with the
order in which tiles are added to assemble C would suffice as a proof. We
verify this proof by checking that C can indeed be assembled by adding the
tiles in the order specified, and that the size of the supertile is larger than
the shape.

In both cases, the size of the proof is linear in the instance size, and the verification
algorithm runs in time quadratic in the instance size.

Lemma 7.3. Unq-Shape is NP-hard under the unique shape model.
Proof. The proof uses a construction proposed by LaBean and Lagoudakis [6]

to solve SAT by exploiting the massive parallelism possible in DNA operations to
emulate a non-deterministic device that solves SAT.

We reduce 3-SAT to Unq-Shape using their construction. Given any instance
of 3-SAT with m clauses and n different variables, we construct an instance of Unq-
Shape, (〈T,S, G, 2〉, M) with |T | = O(m + n), and the size of the shape M of order
O(mn). There is a one-to-one correspondence between variable assignments for the 3-
SAT instance and the supertiles in Term(T), i.e every possible assignment to variables
is associated with a distinct terminal supertile. If the assignment satisfies the formula,
the terminal supertile associated with it has the shape of an (n+2)×(m+3) rectangle;
else the shape associated with the assignment has the shape of an (n + 2)× (m + 3)
rectangle with its top-right corner missing. Thus, if the tile system uniquely assembles
into a rectangle with its top-right corner missing, then no assignment satisfies the 3-
SAT formula; on the other hand, if the tile system does not uniquely assemble into
this corner-missing rectangle, then there is at least one assignment which satisfies the
3-SAT formula. Thus, a polynomial time algorithm to decide Unq-Shape will result
in a polynomial time algorithm for 3-SAT.

The idea of the reduction is to have the bottom row of the rectangle encode
the clauses, have the left column encode the variables, and let the second column
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correspond to a possible assignment of values to the variables. The rest of the assembly
evaluates the formula at that assignment, and the row below the top row encodes
which of the clauses get satisfied by the assignment. A tile gets added to the top-
right corner iff the assignment satisfies all the clauses.

Fig. 7.1. Tile system for evaluation of a 3-SAT formula

Take any 3-SAT formula with n variables, x1, x2, . . . , xn, appearing in m clauses
C1, C2, . . . , Cm. We define a tile system as shown in Figure 7.1, where the temperature
is fixed at 2. In addition to the seed tile, there are n variable tiles which attach on
top of the seed tile to give the first column. The east side of these tiles provides a
strength-2 glue to the assignment tiles. Besides, there are m clause tiles that attach
to the east of the seed tile to form the bottom row. For any clause-variable pair, Cj

and xi, the following computation tiles are present:
1. If xi set to 1 makes the clause Cj true, then the upper left computation tile

shown in the figure is present, otherwise, the upper right one is present.
2. Similarly, if xi set to 0 makes the clause Cj true, then the lower left compu-

tation tile in the figure is present, otherwise, the lower right one is present.
In addition, there are 2n tiles to propagate OK upwards. The tile labeled SAT

attaches to the top-right corner only if the formula is satisfied by the assignment in
the second column of the supertile.

Figures 7.2(a) and (b) show two of the terminal supertiles of a tile system corre-
sponding to the formula (x1 + x2 + x3)(x1 + x2 + x3)(x1 + x2 + x3). Note that since
the assignment x1 = 0, x2 = 1, x3 = 1 satisfies the formula, a tile gets attached in the
top-right corner in Figure 7.2(a). Also, since the assignment x1 = 0, x2 = 1, x3 = 0
does not satisfy the formula, the rectangle in Figure 7.2(b) is missing a tile in the
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top-right corner.

Fig. 7.2. Two terminal supertiles for the formula (x1 + x2 + x3)(x1 + x2 + x3)(x1 + x2 + x3).

7.2. Multiple Tile and Multiple Temperature Models. The algorithm
of [2] to determine whether a tile system uniquely assembles a given shape does
not work if the self-assembly model allows pre-assembled supertiles to be added to
the growing seed supertile. The algorithm therefore does not apply to the multiple
tile model. The algorithm also assumes that once a tile is placed, it can never be
removed. This is not the case in the multiple temperature model. In this section we
consider the complexity of the unique shape problem under the multiple tile model
and the multiple temperature model. We first show that for both models the problem
is NP-hard. We then generalize the proofs of this fact to show that the problem for
both models is neither in NP nor co-NP unless P = NP.

Theorem 7.4. Unq-Shape is NP-hard under the multiple tile model. It remains
NP-hard even when the temperature τ = 2 and q is polynomial in the number of tiles
in the system.

Proof. The proof is a reduction from 3-SAT similar in spirit to the reduction in
Theorem 7.1. For a given instance of 3-SAT with n variables and m clauses, consider
a multiple tile system 〈T, s, G, 2, q = (n + 2)(m + 3)〉 given as follows. The tile set
includes the tiles given in Figure 7.3, as well as the tiles for solving 3-SAT as given in
Theorem 7.1 with the following adjustment. The seed tile is no longer the seed, but
just a tile in the set, and it is given a west glue A with glue strength 1. Also, the SAT
tile from the construction is given a north glue B with strength 1.

This tile set assembles a single width chain of tiles that grows north for n + 2
tiles and then turns east and grows for m + 3 tiles. The east glue of the first tile in
this chain (the seed tile) has east glue A and the last tile in the chain has south glue
B. Denote the shape of this supertile as M . Now in the case that the corresponding
3-SAT formula is not satisfiable, nothing else can be attached and M is uniquely
assembled. However, if there exists a satisfying assignment to the 3-SAT formula, an
(n+2)× (m+3) rectangle whose northeast most tile has north glue B and southwest
most tile has west glue A is in the system’s addable supertile set W . Thus, a supertile
of the shape of an (n + 3)× (m + 4) rectangle can be produced. Thus, in this case M
is not uniquely produced. So the output of Unq-Shape when given this tile system
and shape M as input is yes if and only if the corresponding 3-SAT formula is not
satisfiable. Thus, Unq-Shape is NP-hard under the multiple tile model.
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Fig. 7.3. To show that the Unq-Shape problem is NP-hard for the multiple tile model we modify
the tile set of Theorem 7.1. We add the tiles given above as well as change the seed tile to be S, add
glue A to the west edge of the old seed tile, and add glue B to the north edge of the final SAT tile.

Fig. 7.4. Two terminal supertiles for the formula (x1 + x2 + x3)(x1 + x2 + x3)(x1 + x2 + x3).
In the case that a given 3-SAT formula is not satisfiable, the tree on the right is uniquely assembled.

Theorem 7.5. Unq-Shape is NP-hard under the multiple temperature model.
It remains NP-hard even when the temperature is raised only once.

Proof. We again use a reduction from 3-SAT similar in spirit to the reduction in
Theorem 7.1. For a given 3-SAT formula with n variables and m clauses, consider
the 2-temperature tile system with temperatures τ1 = 2, τ2 = 4, and tile set given
by the construction in Theorem 7.1 with the additions and modifications given in
Figure 7.5. The modifications increase the north/south glue strengths of the tiles
that occur in the first column of the (n+2)× (m+3) construction from strength 2 to
strength 4. Additionally, four tiles are added such that the length of the first column
in the construction grows to height n + 6 rather than n + 2. Another modification
is made to the final SAT tile such that it has a strength two glue on its north edge.
This, in combination with other added tiles, allows a new chain of tiles to be added
in the case that a satisfying set of variable assignments are given. The new tiles grow
westward back to the first column of the construction. Here four tiles are placed,
growing northward now, adjacent to the four extra tiles in the first column. These
four tiles are connected to one another by strength three bonds. In addition, each has
a west glue of strength one.

The idea is that now the temperature of the system is raised from two to four.
At temperature four, each tile between column two and column m+3, row 1 to n+2,
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Fig. 7.5. This tile set in addition to the tile set of Theorem 7.1 under the 2-temperature model
with τ1 = 2 and τ2 = 4 uniquely assembles a (n + 6) × 1 column if and only if the corresponding
3-SAT formula is unsatisfiable.

Fig. 7.6. At the initial temperature τ1 = 2, a supertile of shape given in (a) is formed if a
satisfying assignment to the 3-SAT variables is given. Otherwise, a supertile of the shape given in
(c) is constructed. At temperature τ2 = 4, supertiles like (a) are broken down to the supertile in (b).
Supertiles of form (c) are broken down into the supertile in (d). The supertile in (d) is uniquely
assembled if and only if the corresponding 3-SAT formula is unsatisfiable.

can be removed, going from bottom to top, right to left. All tiles in row n + 3 from
column 3 to m + 3 can also be removed, leaving a height n + 6 column with four
extra tiles attached at the end. Nothing within this supertile can be removed, and
clearly nothing can be added, so this structure is terminal. However, in the case that
no satisfying arrangement exists, the four extra tiles can never get added in the first
phase of the 2-temperature assembly process. So in this case the shape M equal to a
(n + 6) × 1 column is uniquely assembled. Thus, when given this tile set and shape
M as input, the Unq-Shape problem outputs yes if and only if the corresponding
3-SAT formula is not satisfiable. So the Unique-Shape problem is NP-hard for the
2-temperature model.
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Fig. 7.7. To show that the Unq-Shape problem is not in NP or co-NP unless P=NP under the
multiple temperature model, we combine a binary counter with the SAT solving tiles of Section 7.1
to evaluate a given SAT formula for every possible assignment to the variables. Some tiles or
glues of the construction are omitted in this figure as they are unchanged from the construction in
Section 7.1.

Theorem 7.6. Unq-Shape is not in NP or co-NP under the multiple temper-
ature model unless P = NP . This remains true even when the temperature is raised
only once.

Proof.
To show this we generalize the reduction from co-SAT given in Theorem 7.5. Our

construction yields, depending on the input shape, a reduction from either SAT or
co-SAT to the problem of deciding whether a given tile set assembles the given shape.
The “not in co-NP” part of the theorem follows from the SAT reduction, and the “not
in NP” part from the co-SAT reduction.

The reduction is as follows. Given a 3-SAT formula with n variables and m
clauses, we create a tile set at temperature τ1 = 2 in the fashion of Theorem 3.2
that assembles an n-bit binary counter growing from west to east which counts from
0 to 2n − 1. In this case, however, at each incrementation of the counter the given
3-SAT formula is evaluated for the variable assignment corresponding to the current
value of the binary counter. After the final iteration of the counter, a string of tiles
grows back to the initial column of tiles and latches on by creating a second vertical
column that is attached adjacently to the first. However, this growth is disrupted if
any occurrence of a SAT tile is encountered. Thus, such a latch is created if and only
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Fig. 7.8. At temperature τ = 2, if the corresponding SAT formula has no satisfying assignment,
then a growth of tiles, starting at the final NO tile is started and reaches back to the initial column of
variable tiles and clamps on. In the case there are one or more satisfying assignments, the growth is
stopped and a shape like (c) is formed. After raising the temperature to τ = 4, shape (b) is uniquely
produced in the first case and shape (d) in the second. Thus, the Unique-Shape problem with the tile
set of Figure 7.7 yields a reduction from co-SAT with input shape (b), and a reduction from SAT
with input shape (d).

if there is no satisfying assignment to the variables.
The temperature of the system is then raised to τ2 = 4. This eliminates any tile

occurring east of the initial variable column. What is left is a single column supertile
in the case that there exists a satisfying assignment, and a pair of adjacent columns
in the case that there is no satisfying assignment. The tile set for this construction is
given in Figure 7.7. Let shape M be the single column and shape W be the double
column. Thus, when given this tile set and shape M as input, the Unq-Shape
problem outputs yes if and only if the corresponding 3-SAT formula is satisfiable. If
shape W is given as input, the Unq-Shape problem outputs yes if and only if the
corresponding 3-SAT formula is not satisfiable. The first input exhibits the reduction
from SAT, the second from co-SAT. See Figure 7.8 for an example.

Theorem 7.7. Unq-Shape is not in NP or co-NP under the multiple tile model
unless P = NP . This remains true even when the temperature τ = 2.

Proof. The proof is again a reduction from 3-SAT and very similar to the proof
for Theorem 7.6. Consider a given instance of 3-SAT with n variables and m clauses.
Let the size of the addable supertiles be q = 2n(n + 3)(m + 2) + 2(n + 3). The tile set
for the reduction is essentially that from Figure 7.7 except we remove all but one of
the clamping tiles, reduce all glue strengths greater than 2 down to 2, and add tiles
S1 and S2 given in Figure 7.9 with S1 being set as the seed tile.

Clearly this tile set uniquely assembles a two-tile supertile consisting only of S1

and S2 in the case that the 3-SAT formula is satisfiable. On the other hand, if there
is no satisfying arrangement, the complete size (2n(m + 2) + 2) × (n + 3)(m + 2)
rectangle from the tiles of Figure 7.7 is in the set of addable supertiles. The resultant
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Fig. 7.9. Under the multiple tile model with q = 2n(n + 3)(m + 2) + 2(n + 3), the large
(2n(m+2)+2)× (n+3) rectangle can be attached to the two S tiles if and only if the corresponding
3-SAT formula is satisfied.

uniquely assembled shape is then the rectangle with the tiles S1 and S2 attached to
the side. Thus, the unique shape problem with the size two shape given as input
gives a reduction from SAT, while the rectangle with the two S tiles attached gives a
reduction from co-SAT.

8. Conclusions. We have considered various natural generalizations of the self-
assembly model in an attempt to reduce the tile complexity of certain shapes. In doing
so, we have produced a construction for building arbitrary-sized rectangles which is
particularly useful for the assembly of thin rectangles (a k × N rectangle is thin if
k < log N

log log N−log log log N ). This construction also yields a simple way to assemble
thicker rectangles while achieving the same optimal tile and time complexity achieved
in [1]. We use modifications of this construction to show how two of the models, the
multi-temperature model and the flexible glue model, can reduce tile complexity below
theoretical lower bounds for the standard model for certain shapes. In particular, the
multi-temperature model assembles thin k × N rectangles in optimal Θ( log N

log log N ),
while the flexible glue model reduces the complexity of Θ( log N

log log N ) for the assembly
of N × N squares to the tight bound of Θ(

√
log N). For the remaining models, we

have extended Kolmogorov lower bound proofs from [9] to show that for many shapes,
the new models do not improve tile complexity. We have also shown that the problem
of verifying whether a given tile set assembles into a given shape is Co-NPC under
the unique shape model and not in NP or co-NP unless P = NP under the multiple
tile and multiple temperature models, in contrast to the polynomial time solution for
the standard and flexible glue models.

There are a number of open questions remaining, some of which are as follows.
First, there are some questions as to how the parameter q in the multiple tile model
affects complexity. The proof of the Kolmogorov lower bound for N ×N squares does
not hold if the bound of q on the size of the addable supertiles is removed. Also,
to show that the Unq-Shape problem under the multiple tile model is neither in
NP or co-NP we required that q be exponential in the size of the tile set. To show
NP-hardness, we needed q to grow linearly in the size of the tile set. For polynomial
sized q, is the problem in NP or co-NP, and for constant q, is the problem in P?

Second, can new examples be found showing that the generalized models can
reduce tile complexity? For example, are there shapes for which the multiple tile or
the unique shape models reduce complexity? And for the multiple temperature model,
can it help to use more than two temperatures? If so, does the temperature need
only be monotonically increasing or can it help to raise and lower the temperature?
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Also, the construction for the flexible glue model shows how to create rectangles with
width at least logarithmic in their length, but does not work for thinner rectangles.
However, for medium rectangles (width less than log N but not thin) we can combine
the flexible glue model with the 2-temperature model to attain the tight Θ(

√
log N)

tile complexity. Is it possible to assemble such a rectangle using only the flexible glue
model? And finally, even in the case of the standard model, the Kolmogorov lower
bounds for the assembly of N × N squares (Theorems 6.1, 6.2) do not apply if the
temperature of the system is a large exponential function of N . If this is allowed, is
it possible to reduce the tile complexity of assembling N ×N squares?

9. Acknowledgement. We would like to thank the anonymous reviewer of this
paper for the extremely detailed and helpful comments.
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