
May 27, 2002

An Introduction to Neural Networks

Vincent Cheung

Kevin Cannons
Signal & Data Compression Laboratory

Electrical & Computer Engineering

University of Manitoba

Winnipeg, Manitoba, Canada

Advisor: Dr. W. Kinsner

Cheung/Cannons 1

Neural Networks

Outline

● Fundamentals

● Classes

● Design and Verification

● Results and Discussion

● Conclusion

Cheung/Cannons 2

Neural Networks

What Are Artificial Neural Networks?

● An extremely simplified model of the brain

● Essentially a function approximator
► Transforms inputs into outputs to the best of its ability

Fu
nd

am
en

ta
ls

C
la

ss
es

D
es

ig
n

R
es

ul
ts

NNInputs Outputs

Inputs Outputs

Cheung/Cannons 3

Neural Networks

What Are Artificial Neural Networks?

● Composed of many “neurons” that co-operate
to perform the desired function

Fu
nd

am
en

ta
ls

C
la

ss
es

D
es

ig
n

R
es

ul
ts

Cheung/Cannons 4

Neural Networks

What Are They Used For?

● Classification
► Pattern recognition, feature extraction, image

matching

● Noise Reduction
► Recognize patterns in the inputs and produce

noiseless outputs

● Prediction
► Extrapolation based on historical data

Fu
nd

am
en

ta
ls

C
la

ss
es

D
es

ig
n

R
es

ul
ts

Cheung/Cannons 5

Neural Networks

Why Use Neural Networks?

● Ability to learn
► NN’s figure out how to perform their function on their own
► Determine their function based only upon sample inputs

● Ability to generalize
► i.e. produce reasonable outputs for inputs it has not been

taught how to deal with

Fu
nd

am
en

ta
ls

C
la

ss
es

D
es

ig
n

R
es

ul
ts

Cheung/Cannons 6

Neural Networks

How Do Neural Networks Work?

● The output of a neuron is a function of the
weighted sum of the inputs plus a bias

● The function of the entire neural network is simply
the computation of the outputs of all the neurons
► An entirely deterministic calculation

Neuron

i1
i2

i3

bias

Output = f(i1w1 + i2w2 + i3w3 + bias)

w1
w2
w3

Fu
nd

am
en

ta
ls

C
la

ss
es

D
es

ig
n

R
es

ul
ts

Cheung/Cannons 7

Neural Networks

Activation Functions

● Applied to the weighted sum of the inputs of a
neuron to produce the output

● Majority of NN’s use sigmoid functions
► Smooth, continuous, and monotonically increasing

(derivative is always positive)
► Bounded range - but never reaches max or min

■ Consider “ON” to be slightly less than the max and “OFF” to
be slightly greater than the min

Fu
nd

am
en

ta
ls

C
la

ss
es

D
es

ig
n

R
es

ul
ts

Cheung/Cannons 8

Neural Networks

Activation Functions

● The most common sigmoid function used is the
logistic function
► f(x) = 1/(1 + e-x)
► The calculation of derivatives are important for neural

networks and the logistic function has a very nice
derivative
■ f’(x) = f(x)(1 - f(x))

● Other sigmoid functions also used
► hyperbolic tangent
► arctangent

● The exact nature of the function has little effect on
the abilities of the neural network

Fu
nd

am
en

ta
ls

C
la

ss
es

D
es

ig
n

R
es

ul
ts

Cheung/Cannons 9

Neural Networks

Where Do The Weights Come From?

● The weights in a neural network are the most
important factor in determining its function

● Training is the act of presenting the network with
some sample data and modifying the weights to
better approximate the desired function

● There are two main types of training
► Supervised Training

■ Supplies the neural network with inputs and the desired
outputs

■ Response of the network to the inputs is measured
È The weights are modified to reduce the difference between

the actual and desired outputs

Fu
nd

am
en

ta
ls

C
la

ss
es

D
es

ig
n

R
es

ul
ts

Cheung/Cannons 10

Neural Networks

Where Do The Weights Come From?

► Unsupervised Training
■ Only supplies inputs
■ The neural network adjusts its own weights so that similar

inputs cause similar outputs
È The network identifies the patterns and differences in the

inputs without any external assistance

● Epoch
■ One iteration through the process of providing the network

with an input and updating the network's weights
■ Typically many epochs are required to train the neural

network

Fu
nd

am
en

ta
ls

C
la

ss
es

D
es

ig
n

R
es

ul
ts

Cheung/Cannons 11

Neural Networks

Perceptrons

● First neural network with the ability to learn

● Made up of only input neurons and output neurons

● Input neurons typically have two states: ON and OFF

● Output neurons use a simple threshold activation function

● In basic form, can only solve linear problems
► Limited applications

.5

.2

.8

Input Neurons Weights Output Neuron

Fu
nd

am
en

ta
ls

C
la

ss
es

D
es

ig
n

R
es

ul
ts

Cheung/Cannons 12

Neural Networks

How Do Perceptrons Learn?

● Uses supervised training

● If the output is not correct, the weights are
adjusted according to the formula:

■ wnew = wold + α(desired – output)*input

1

0

1

0.5

0.2

0.8

1

1 * 0.5 + 0 * 0.2 + 1 * 0.8 = 1.3
Assuming Output Threshold = 1.2

1.3 > 1.2

Assume Output was supposed to be 0
Ą update the weights

W1new = 0.5 + 1*(0-1)*1 = -0.5
W2new = 0.2 + 1*(0-1)*0 = 0.2
W3new = 0.8 + 1*(0-1)*1 = -0.2

Assume α = 1

Fu
nd

am
en

ta
ls

C
la

ss
es

D
es

ig
n

R
es

ul
ts

α is the learning rate

Cheung/Cannons 13

Neural Networks

Multilayer Feedforward Networks

● Most common neural network

● An extension of the perceptron
► Multiple layers

■ The addition of one or more “hidden” layers in between the
input and output layers

► Activation function is not simply a threshold
■ Usually a sigmoid function

► A general function approximator
■ Not limited to linear problems

● Information flows in one direction
► The outputs of one layer act as inputs to the next layer

Fu
nd

am
en

ta
ls

C
la

ss
es

D
es

ig
n

R
es

ul
ts

Cheung/Cannons 14

Neural Networks

XOR Example

Inputs
Output

0

1

H2: Net = 0(-4.63) + 1(4.6) – 2.74 = 1.86
Output = 1 / (1 + e-1.86) = 0.8652

Inputs: 0, 1

H1: Net = 0(4.83) + 1(-4.83) – 2.82 = -7.65
Output = 1 / (1 + e7.65) = 4.758 x 10-4

O: Net = 4.758 x 10-4(5.73) + 0.8652(5.83) – 2.86 = 2.187
Output = 1 / (1 + e-2.187) = 0.8991 ≡ “1”

Fu
nd

am
en

ta
ls

C
la

ss
es

D
es

ig
n

R
es

ul
ts

Cheung/Cannons 15

Neural Networks

Backpropagation

● Most common method of obtaining the many
weights in the network

● A form of supervised training

● The basic backpropagation algorithm is based on
minimizing the error of the network using the
derivatives of the error function
► Simple
► Slow
► Prone to local minima issues

Fu
nd

am
en

ta
ls

C
la

ss
es

D
es

ig
n

R
es

ul
ts

Cheung/Cannons 16

Neural Networks

Backpropagation

● Most common measure of error is the mean
square error:

E = (target – output)2

● Partial derivatives of the error wrt the weights:
► Output Neurons:

let: δj = f’(netj) (targetj – outputj)
∂E/∂wji = -outputi δj

► Hidden Neurons:
let: δj = f’(netj) Σ(δkwkj)
∂E/∂wji = -outputi δj

j = output neuron
i = neuron in last hidden

j = hidden neuron
i = neuron in previous layer
k = neuron in next layer

Fu
nd

am
en

ta
ls

C
la

ss
es

D
es

ig
n

R
es

ul
ts

Cheung/Cannons 17

Neural Networks

Backpropagation

● Calculation of the derivatives flows backwards
through the network, hence the name,
backpropagation

● These derivatives point in the direction of the
maximum increase of the error function

● A small step (learning rate) in the opposite
direction will result in the maximum decrease of
the (local) error function:

wnew = wold – α ∂E/∂wold

where α is the learning rate

Fu
nd

am
en

ta
ls

C
la

ss
es

D
es

ig
n

R
es

ul
ts

Cheung/Cannons 18

Neural Networks

Backpropagation

● The learning rate is important
► Too small

■ Convergence extremely slow
► Too large

■ May not converge

● Momentum
► Tends to aid convergence
► Applies smoothed averaging to the change in weights:

∆new = β∆old - α ∂E/∂wold

wnew = wold + ∆new

► Acts as a low-pass filter by reducing rapid fluctuations

β is the momentum coefficient

Fu
nd

am
en

ta
ls

C
la

ss
es

D
es

ig
n

R
es

ul
ts

Cheung/Cannons 19

Neural Networks

Local Minima

● Training is essentially minimizing the mean square
error function
► Key problem is avoiding local minima
► Traditional techniques for avoiding local minima:

■ Simulated annealing
È Perturb the weights in progressively smaller amounts

■ Genetic algorithms
È Use the weights as chromosomes
È Apply natural selection, mating, and mutations to these

chromosomes

Fu
nd

am
en

ta
ls

C
la

ss
es

D
es

ig
n

R
es

ul
ts

Cheung/Cannons 20

Neural Networks

Counterpropagation (CP) Networks

● Another multilayer feedforward network

● Up to 100 times faster than backpropagation

● Not as general as backpropagation

● Made up of three layers:
► Input
► Kohonen
► Grossberg (Output)

Inputs Input
Layer

Kohonen
Layer

Grossberg
Layer

Outputs

Fu
nd

am
en

ta
ls

C
la

ss
es

D
es

ig
n

R
es

ul
ts

Cheung/Cannons 21

Neural Networks

How Do They Work?

● Kohonen Layer:
► Neurons in the Kohonen layer sum all of the weighted

inputs received
► The neuron with the largest sum outputs a 1 and the

other neurons output 0

● Grossberg Layer:
► Each Grossberg neuron merely outputs the weight of the

connection between itself and the one active Kohonen
neuron

Fu
nd

am
en

ta
ls

C
la

ss
es

D
es

ig
n

R
es

ul
ts

Cheung/Cannons 22

Neural Networks

Why Two Different Types of Layers?

● More accurate representation of biological neural
networks

● Each layer has its own distinct purpose:
► Kohonen layer separates inputs into separate classes

■ Inputs in the same class will turn on the same Kohonen
neuron

► Grossberg layer adjusts weights to obtain acceptable
outputs for each class

Fu
nd

am
en

ta
ls

C
la

ss
es

D
es

ig
n

R
es

ul
ts

Cheung/Cannons 23

Neural Networks

Training a CP Network

● Training the Kohonen layer
► Uses unsupervised training
► Input vectors are often normalized
► The one active Kohonen neuron updates its weights

according to the formula:

wnew = wold + α(input - wold)
where α is the learning rate

■ The weights of the connections are being modified to more
closely match the values of the inputs

■ At the end of training, the weights will approximate the
average value of the inputs in that class

Fu
nd

am
en

ta
ls

C
la

ss
es

D
es

ig
n

R
es

ul
ts

Cheung/Cannons 24

Neural Networks

Training a CP Network

● Training the Grossberg layer
► Uses supervised training
► Weight update algorithm is similar to that used in

backpropagation

Fu
nd

am
en

ta
ls

C
la

ss
es

D
es

ig
n

R
es

ul
ts

Cheung/Cannons 25

Neural Networks

Hidden Layers and Neurons

● For most problems, one layer is sufficient

● Two layers are required when the function is
discontinuous

● The number of neurons is very important:
► Too few

■ Underfit the data – NN can’t learn the details
► Too many

■ Overfit the data – NN learns the insignificant details
► Start small and increase the number until satisfactory

results are obtained

Fu
nd

am
en

ta
ls

C
la

ss
es

D
es

ig
n

R
es

ul
ts

Cheung/Cannons 26

Neural Networks

Overfitting

Training
Test
Well fit
Overfit

Fu
nd

am
en

ta
ls

C
la

ss
es

D
es

ig
n

R
es

ul
ts

Cheung/Cannons 27

Neural Networks

How is the Training Set Chosen?

● Overfitting can also occur if a “good” training set is
not chosen

● What constitutes a “good” training set?
► Samples must represent the general population
► Samples must contain members of each class
► Samples in each class must contain a wide range of

variations or noise effect

Fu
nd

am
en

ta
ls

C
la

ss
es

D
es

ig
n

R
es

ul
ts

Cheung/Cannons 28

Neural Networks

Size of the Training Set

● The size of the training set is related to the
number of hidden neurons
► Eg. 10 inputs, 5 hidden neurons, 2 outputs:
► 11(5) + 6(2) = 67 weights (variables)
► If only 10 training samples are used to determine these

weights, the network will end up being overfit
■ Any solution found will be specific to the 10 training

samples
■ Analogous to having 10 equations, 67 unknowns Ą you

can come up with a specific solution, but you can’t find the
general solution with the given information

Fu
nd

am
en

ta
ls

C
la

ss
es

D
es

ig
n

R
es

ul
ts

Cheung/Cannons 29

Neural Networks

Training and Verification

● The set of all known samples is broken into two
orthogonal (independent) sets:
► Training set

■ A group of samples used to train the neural network
► Testing set

■ A group of samples used to test the performance of the
neural network

■ Used to estimate the error rate

Known Samples

Training
Set

Testing
Set

Fu
nd

am
en

ta
ls

C
la

ss
es

D
es

ig
n

R
es

ul
ts

Cheung/Cannons 30

Neural Networks

Verification

● Provides an unbiased test of the quality of the
network

● Common error is to “test” the neural network using
the same samples that were used to train the
neural network
► The network was optimized on these samples, and will

obviously perform well on them
► Doesn’t give any indication as to how well the network

will be able to classify inputs that weren’t in the training
set

Fu
nd

am
en

ta
ls

C
la

ss
es

D
es

ig
n

R
es

ul
ts

Cheung/Cannons 31

Neural Networks

Verification

● Various metrics can be used to grade the
performance of the neural network based upon the
results of the testing set
► Mean square error, SNR, etc.

● Resampling is an alternative method of estimating
error rate of the neural network
► Basic idea is to iterate the training and testing

procedures multiple times
► Two main techniques are used:

■ Cross-Validation
■ Bootstrapping

Fu
nd

am
en

ta
ls

C
la

ss
es

D
es

ig
n

R
es

ul
ts

Cheung/Cannons 32

Neural Networks

Results and Discussion

● A simple toy problem was used to test the
operation of a perceptron

● Provided the perceptron with 5 pieces of
information about a face – the individual’s hair,
eye, nose, mouth, and ear type
► Each piece of information could take a value of +1 or -1

■ +1 indicates a “girl” feature
■ -1 indicates a “guy” feature

● The individual was to be classified as a girl if the
face had more “girl” features than “guy” features
and a boy otherwise

Fu
nd

am
en

ta
ls

C
la

ss
es

D
es

ig
n

R
es

ul
ts

Cheung/Cannons 33

Neural Networks

Results and Discussion

● Constructed a perceptron with 5 inputs and 1
output

● Trained the perceptron with 24 out of the 32
possible inputs over 1000 epochs

● The perceptron was able to classify the faces that
were not in the training set

Face
Feature

Input
Values

Input
neurons

Output
neuron

Output value
indicating
boy or girl

Fu
nd

am
en

ta
ls

C
la

ss
es

D
es

ig
n

R
es

ul
ts

Cheung/Cannons 34

Neural Networks

Results and Discussion

● A number of toy problems were tested on
multilayer feedforward NN’s with a single hidden
layer and backpropagation:
► Inverter

■ The NN was trained to simply output 0.1 when given a “1”
and 0.9 when given a “0”
È A demonstration of the NN’s ability to memorize

■ 1 input, 1 hidden neuron, 1 output
■ With learning rate of 0.5 and no momentum, it took about

3,500 epochs for sufficient training
■ Including a momentum coefficient of 0.9 reduced the

number of epochs required to about 250

Fu
nd

am
en

ta
ls

C
la

ss
es

D
es

ig
n

R
es

ul
ts

Cheung/Cannons 35

Neural Networks

Results and Discussion

► Inverter (continued)
■ Increasing the learning rate decreased the training time

without hampering convergence for this simple example
■ Increasing the epoch size, the number of samples per

epoch, decreased the number of epochs required and
seemed to aid in convergence (reduced fluctuations)

■ Increasing the number of hidden neurons decreased the
number of epochs required
È Allowed the NN to better memorize the training set – the goal

of this toy problem
È Not recommended to use in “real” problems, since the NN

loses its ability to generalize

Fu
nd

am
en

ta
ls

C
la

ss
es

D
es

ig
n

R
es

ul
ts

Cheung/Cannons 36

Neural Networks

Results and Discussion

► AND gate
■ 2 inputs, 2 hidden neurons, 1 output
■ About 2,500 epochs were required when using momentum

► XOR gate
■ Same as AND gate

► 3-to-8 decoder
■ 3 inputs, 3 hidden neurons, 8 outputs
■ About 5,000 epochs were required when using momentum

Fu
nd

am
en

ta
ls

C
la

ss
es

D
es

ig
n

R
es

ul
ts

Cheung/Cannons 37

Neural Networks

Results and Discussion

► Absolute sine function approximator (|sin(x)|)
■ A demonstration of the NN’s ability to learn the desired

function, |sin(x)|, and to generalize
■ 1 input, 5 hidden neurons, 1 output
■ The NN was trained with samples between –π/2 and π/2

È The inputs were rounded to one decimal place
È The desired targets were scaled to between 0.1 and 0.9

■ The test data contained samples in between the training
samples (i.e. more than 1 decimal place)
È The outputs were translated back to between 0 and 1

■ About 50,000 epochs required with momentum
■ Not smooth function at 0 (only piece-wise continuous)

Fu
nd

am
en

ta
ls

C
la

ss
es

D
es

ig
n

R
es

ul
ts

Cheung/Cannons 38

Neural Networks

Results and Discussion

► Gaussian function approximator (e-x2)
■ 1 input, 2 hidden neurons, 1 output
■ Similar to the absolute sine function approximator, except

that the domain was changed to between -3 and 3
■ About 10,000 epochs were required with momentum
■ Smooth function

Fu
nd

am
en

ta
ls

C
la

ss
es

D
es

ig
n

R
es

ul
ts

Cheung/Cannons 39

Neural Networks

Results and Discussion

► Primality tester
■ 7 inputs, 8 hidden neurons, 1 output
■ The input to the NN was a binary number
■ The NN was trained to output 0.9 if the number was prime

and 0.1 if the number was composite
È Classification and memorization test

■ The inputs were restricted to between 0 and 100
■ About 50,000 epochs required for the NN to memorize the

classifications for the training set
È No attempts at generalization were made due to the

complexity of the pattern of prime numbers
■ Some issues with local minima

Fu
nd

am
en

ta
ls

C
la

ss
es

D
es

ig
n

R
es

ul
ts

Cheung/Cannons 40

Neural Networks

Results and Discussion

► Prime number generator
■ Provide the network with a seed, and a prime number of the

same order should be returned
■ 7 inputs, 4 hidden neurons, 7 outputs
■ Both the input and outputs were binary numbers
■ The network was trained as an autoassociative network

È Prime numbers from 0 to 100 were presented to the network
and it was requested that the network echo the prime
numbers

È The intent was to have the network output the closest prime
number when given a composite number

■ After one million epochs, the network was successfully able
to produce prime numbers for about 85 - 90% of the
numbers between 0 and 100

■ Using Gray code instead of binary did not improve results
■ Perhaps needs a second hidden layer, or implement some

heuristics to reduce local minima issues

Fu
nd

am
en

ta
ls

C
la

ss
es

D
es

ig
n

R
es

ul
ts

Cheung/Cannons 41

Neural Networks

Conclusion

● The toy examples confirmed the basic operation of
neural networks and also demonstrated their
ability to learn the desired function and generalize
when needed

● The ability of neural networks to learn and
generalize in addition to their wide range of
applicability makes them very powerful tools

Cheung/Cannons 42

Neural Networks

Questions and Comments

Cheung/Cannons 43

Neural Networks

Acknowledgements

● Natural Sciences and Engineering Research
Council (NSERC)

● University of Manitoba

Cheung/Cannons 44

Neural Networks

References

[AbDo99] H. Abdi, D. Valentin, B. Edelman, Neural Networks, Thousand Oaks, CA: SAGE Publication
Inc., 1999.

[Hayk94] S. Haykin, Neural Networks, New York, NY: Nacmillan College Publishing Company, Inc., 1994.

[Mast93] T. Masters, Practial Neural Network Recipes in C++, Toronto, ON: Academic Press, Inc., 1993.

[Scha97] R. Schalkoff, Artificial Neural Networks, Toronto, ON: the McGraw-Hill Companies, Inc., 1997.

[WeKu91] S. M. Weiss and C. A. Kulikowski, Computer Systems That Learn, San Mateo, CA: Morgan
Kaufmann Publishers, Inc., 1991.

[Wass89] P. D. Wasserman, Neural Computing: Theory and Practice, New York, NY: Van Nostrand
Reinhold, 1989.

