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Neural Networks

What Are Artificial Neural Networks?

● An extremely simplified model of the brain

● Essentially a function approximator
► Transforms inputs into outputs to the best of its ability
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Neural Networks

What Are Artificial Neural Networks?

● Composed of many “neurons” that co-operate 
to perform the desired function
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Neural Networks

What Are They Used For?

● Classification
► Pattern recognition, feature extraction, image 

matching

● Noise Reduction
► Recognize patterns in the inputs and produce 

noiseless outputs

● Prediction
► Extrapolation based on historical data
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Neural Networks

Why Use Neural Networks?

● Ability to learn
► NN’s figure out how to perform their function on their own
► Determine their function based only upon sample inputs

● Ability to generalize
► i.e. produce reasonable outputs for inputs it has not been 

taught how to deal with
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Neural Networks

How Do Neural Networks Work?

● The output of a neuron is a function of the 
weighted sum of the inputs plus a bias

● The function of the entire neural network is simply 
the computation of the outputs of all the neurons
► An entirely deterministic calculation

Neuron

i1
i2

i3

bias

Output = f(i1w1 + i2w2 + i3w3 + bias)

w1
w2
w3

Fu
nd

am
en

ta
ls

C
la

ss
es

D
es

ig
n

R
es

ul
ts



Cheung/Cannons 7

Neural Networks

Activation Functions

● Applied to the weighted sum of the inputs of a 
neuron to produce the output

● Majority of NN’s use sigmoid functions
► Smooth, continuous, and monotonically increasing 

(derivative is always positive)
► Bounded range - but never reaches max or min

■ Consider “ON” to be slightly less than the max and “OFF” to 
be slightly greater than the min
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Neural Networks

Activation Functions

● The most common sigmoid function used is the 
logistic function
► f(x) = 1/(1 + e-x)
► The calculation of derivatives are important for neural 

networks and the logistic function has a very nice 
derivative
■ f’(x) = f(x)(1 - f(x))

● Other sigmoid functions also used
► hyperbolic tangent
► arctangent

● The exact nature of the function has little effect on 
the abilities of the neural network
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Neural Networks

Where Do The Weights Come From?

● The weights in a neural network are the most 
important factor in determining its function

● Training is the act of presenting the network with 
some sample data and modifying the weights to 
better approximate the desired function

● There are two main types of training
► Supervised Training

■ Supplies the neural network with inputs and the desired 
outputs

■ Response of the network to the inputs is measured
È The weights are modified to reduce the difference between 

the actual and desired outputs
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Neural Networks

Where Do The Weights Come From?

► Unsupervised Training
■ Only supplies inputs
■ The neural network adjusts its own weights so that similar 

inputs cause similar outputs
È The network identifies the patterns and differences in the 

inputs without any external assistance

● Epoch
■ One iteration through the process of providing the network 

with an input and updating the network's weights
■ Typically many epochs are required to train the neural 

network
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Neural Networks

Perceptrons

● First neural network with the ability to learn

● Made up of only input neurons and output neurons

● Input neurons typically have two states: ON and OFF 

● Output neurons use a simple threshold activation function

● In basic form, can only solve linear problems
► Limited applications

.5 

.2 

.8 

Input Neurons Weights Output Neuron 
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Neural Networks

How Do Perceptrons Learn?

● Uses supervised training

● If the output is not correct, the weights are 
adjusted according to the formula:

■ wnew = wold + α(desired – output)*input

1

0

1

0.5

0.2

0.8

1

1 * 0.5 + 0 * 0.2 + 1 * 0.8 = 1.3
Assuming Output Threshold = 1.2

1.3 > 1.2

Assume Output was supposed to be 0
Ą update the weights

W1new = 0.5 + 1*(0-1)*1 = -0.5
W2new = 0.2 + 1*(0-1)*0 = 0.2
W3new = 0.8 + 1*(0-1)*1 = -0.2

Assume α = 1
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Neural Networks

Multilayer Feedforward Networks

● Most common neural network

● An extension of the perceptron
► Multiple layers

■ The addition of one or more “hidden” layers in between the 
input and output layers

► Activation function is not simply a threshold
■ Usually a sigmoid function

► A general function approximator
■ Not limited to linear problems

● Information flows in one direction
► The outputs of one layer act as inputs to the next layer
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Neural Networks

XOR Example

Inputs
Output

0

1

H2: Net = 0(-4.63) + 1(4.6) – 2.74 = 1.86
Output = 1 / (1 + e-1.86) = 0.8652

Inputs: 0, 1

H1: Net = 0(4.83) + 1(-4.83) – 2.82 = -7.65
Output = 1 / (1 + e7.65) = 4.758 x 10-4

O: Net = 4.758 x 10-4(5.73) + 0.8652(5.83) – 2.86 = 2.187
Output = 1 / (1 + e-2.187) = 0.8991 ≡ “1”
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Neural Networks

Backpropagation

● Most common method of obtaining the many 
weights in the network

● A form of supervised training

● The basic backpropagation algorithm is based on 
minimizing the error of the network using the 
derivatives of the error function
► Simple
► Slow
► Prone to local minima issues
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Neural Networks

Backpropagation

● Most common measure of error is the mean 
square error:

E = (target – output)2

● Partial derivatives of the error wrt the weights:
► Output Neurons:

let:  δj = f’(netj) (targetj – outputj)
∂E/∂wji = -outputi δj

► Hidden Neurons:
let:  δj = f’(netj) Σ(δkwkj)
∂E/∂wji = -outputi δj

j = output neuron
i = neuron in last hidden

j = hidden neuron
i = neuron in previous layer
k = neuron in next layer
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Neural Networks

Backpropagation

● Calculation of the derivatives flows backwards 
through the network, hence the name, 
backpropagation

● These derivatives point in the direction of the 
maximum increase of the error function

● A small step (learning rate) in the opposite 
direction will result in the maximum decrease of 
the (local) error function:

wnew = wold – α ∂E/∂wold

where α is the learning rate
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Neural Networks

Backpropagation

● The learning rate is important
► Too small

■ Convergence extremely slow
► Too large

■ May not converge

● Momentum
► Tends to aid convergence
► Applies smoothed averaging to the change in weights:

∆new = β∆old - α ∂E/∂wold

wnew = wold + ∆new

► Acts as a low-pass filter by reducing rapid fluctuations

β is the momentum coefficient
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Neural Networks

Local Minima

● Training is essentially minimizing the mean square 
error function
► Key problem is avoiding local minima
► Traditional techniques for avoiding local minima:

■ Simulated annealing
È Perturb the weights in progressively smaller amounts

■ Genetic algorithms
È Use the weights as chromosomes
È Apply natural selection, mating, and mutations to these 

chromosomes
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Neural Networks

Counterpropagation (CP) Networks

● Another multilayer feedforward network

● Up to 100 times faster than backpropagation

● Not as general as backpropagation

● Made up of three layers: 
► Input
► Kohonen
► Grossberg (Output)

Inputs Input 
Layer 

Kohonen 
Layer 

Grossberg 
Layer 

Outputs 
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Neural Networks

How Do They Work?

● Kohonen Layer:
► Neurons in the Kohonen layer sum all of the weighted 

inputs received
► The neuron with the largest sum outputs a 1 and the 

other neurons output 0

● Grossberg Layer:
► Each Grossberg neuron merely outputs the weight of the 

connection between itself and the one active Kohonen
neuron
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Neural Networks

Why Two Different Types of Layers?

● More accurate representation of biological neural 
networks

● Each layer has its own distinct purpose:
► Kohonen layer separates inputs into separate classes

■ Inputs in the same class will turn on the same Kohonen
neuron

► Grossberg layer adjusts weights to obtain acceptable 
outputs for each class
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Neural Networks

Training a CP Network

● Training the Kohonen layer
► Uses unsupervised training
► Input vectors are often normalized 
► The one active Kohonen neuron updates its weights 

according to the formula:

wnew = wold + α(input - wold)
where α is the learning rate

■ The weights of the connections are being modified to more 
closely match the values of the inputs

■ At the end of training, the weights will approximate the 
average value of the inputs in that class
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Neural Networks

Training a CP Network

● Training the Grossberg layer
► Uses supervised training
► Weight update algorithm is similar to that used in 

backpropagation
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Neural Networks

Hidden Layers and Neurons

● For most problems, one layer is sufficient

● Two layers are required when the function is 
discontinuous

● The number of neurons is very important:
► Too few

■ Underfit the data – NN can’t learn the details
► Too many

■ Overfit the data – NN learns the insignificant details
► Start small and increase the number until satisfactory 

results are obtained
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Neural Networks

Overfitting

Training
Test
Well fit
Overfit
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Neural Networks

How is the Training Set Chosen?

● Overfitting can also occur if a “good” training set is 
not chosen

● What constitutes a “good” training set?
► Samples must represent the general population
► Samples must contain members of each class
► Samples in each class must contain a wide range of 

variations or noise effect
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Neural Networks

Size of the Training Set 

● The size of the training set is related to the 
number of hidden neurons
► Eg. 10 inputs, 5 hidden neurons, 2 outputs:
► 11(5) + 6(2) = 67 weights (variables)
► If only 10 training samples are used to determine these 

weights, the network will end up being overfit
■ Any solution found will be specific to the 10 training 

samples
■ Analogous to having 10 equations, 67 unknowns Ą you 

can come up with a specific solution, but you can’t find the 
general solution with the given information
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Neural Networks

Training and Verification

● The set of all known samples is broken into two 
orthogonal (independent) sets:
► Training set

■ A group of samples used to train the neural network
► Testing set

■ A group of samples used to test the performance of the 
neural network

■ Used to estimate the error rate

Known Samples

Training
Set

Testing
Set
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Neural Networks

Verification

● Provides an unbiased test of the quality of the 
network 

● Common error is to “test” the neural network using 
the same samples that were used to train the 
neural network
► The network was optimized on these samples, and will 

obviously perform well on them
► Doesn’t give any indication as to how well the network 

will be able to classify inputs that weren’t in the training 
set
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Neural Networks

Verification

● Various metrics can be used to grade the 
performance of the neural network based upon the 
results of the testing set
► Mean square error, SNR, etc. 

● Resampling is an alternative method of estimating 
error rate of the neural network
► Basic idea is to iterate the training and testing 

procedures multiple times
► Two main techniques are used:

■ Cross-Validation
■ Bootstrapping
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Neural Networks

Results and Discussion

● A simple toy problem was used to test the 
operation of a perceptron

● Provided the perceptron with 5 pieces of 
information about a face – the individual’s hair, 
eye, nose, mouth, and ear type
► Each piece of information could take a value of +1 or -1

■ +1 indicates a “girl” feature
■ -1 indicates a “guy” feature

● The individual was to be classified as a girl if the 
face had more “girl” features than “guy” features 
and a boy otherwise
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Neural Networks

Results and Discussion

● Constructed a perceptron with 5 inputs and 1 
output

● Trained the perceptron with 24 out of the 32 
possible inputs over 1000 epochs

● The perceptron was able to classify the faces that 
were not in the training set

Face 
Feature 

Input 
Values 

Input 
neurons 

Output 
neuron 

Output value 
indicating 
boy or girl 
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Neural Networks

Results and Discussion

● A number of toy problems were tested on 
multilayer feedforward NN’s with a single hidden 
layer and backpropagation:
► Inverter

■ The NN was trained to simply output 0.1 when given a “1”
and 0.9 when given a “0”
È A demonstration of the NN’s ability to memorize

■ 1 input, 1 hidden neuron, 1 output
■ With learning rate of 0.5 and no momentum, it took about 

3,500 epochs for sufficient training
■ Including a momentum coefficient of 0.9 reduced the 

number of epochs required to about 250
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Neural Networks

Results and Discussion

► Inverter (continued)
■ Increasing the learning rate decreased the training time 

without hampering convergence for this simple example
■ Increasing the epoch size, the number of samples per 

epoch, decreased the number of epochs required and 
seemed to aid in convergence (reduced fluctuations)

■ Increasing the number of hidden neurons decreased the 
number of epochs required
È Allowed the NN to better memorize the training set – the goal 

of this toy problem
È Not recommended to use in “real” problems, since the NN 

loses its ability to generalize
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Neural Networks

Results and Discussion

► AND gate
■ 2 inputs, 2 hidden neurons, 1 output
■ About 2,500 epochs were required when using momentum

► XOR gate
■ Same as AND gate

► 3-to-8 decoder
■ 3 inputs, 3 hidden neurons, 8 outputs
■ About 5,000 epochs were required when using momentum
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Neural Networks

Results and Discussion

► Absolute sine function approximator (|sin(x)|)
■ A demonstration of the NN’s ability to learn the desired 

function, |sin(x)|, and to generalize
■ 1 input, 5 hidden neurons, 1 output
■ The NN was trained with samples between –π/2 and π/2

È The inputs were rounded to one decimal place
È The desired targets were scaled to between 0.1 and 0.9

■ The test data contained samples in between the training 
samples (i.e. more than 1 decimal place)
È The outputs were translated back to between 0 and 1

■ About 50,000 epochs required with momentum
■ Not smooth function at 0 (only piece-wise continuous)
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Neural Networks

Results and Discussion

► Gaussian function approximator (e-x2)
■ 1 input, 2 hidden neurons, 1 output
■ Similar to the absolute sine function approximator, except 

that the domain was changed to between -3 and 3
■ About 10,000 epochs were required with momentum
■ Smooth function
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Neural Networks

Results and Discussion

► Primality tester
■ 7 inputs, 8 hidden neurons, 1 output
■ The input to the NN was a binary number
■ The NN was trained to output 0.9 if the number was prime 

and 0.1 if the number was composite
È Classification and memorization test

■ The inputs were restricted to between 0 and 100
■ About 50,000 epochs required for the NN to memorize the 

classifications for the training set
È No attempts at generalization were made due to the 

complexity of the pattern of prime numbers
■ Some issues with local minima
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Neural Networks

Results and Discussion

► Prime number generator
■ Provide the network with a seed, and a prime number of the 

same order should be returned
■ 7 inputs, 4 hidden neurons, 7 outputs
■ Both the input and outputs were binary numbers
■ The network was trained as an autoassociative network

È Prime numbers from 0 to 100 were presented to the network 
and it was requested that the network echo the prime 
numbers

È The intent was to have the network output the closest prime 
number when given a composite number

■ After one million epochs, the network was successfully able 
to produce prime numbers for about 85 - 90% of the 
numbers between 0 and 100

■ Using Gray code instead of binary did not improve results
■ Perhaps needs a second hidden layer, or implement some 

heuristics to reduce local minima issues
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Neural Networks

Conclusion

● The toy examples confirmed the basic operation of 
neural networks and also demonstrated their 
ability to learn the desired function and generalize 
when needed

● The ability of neural networks to learn and 
generalize in addition to their wide range of 
applicability makes them very powerful tools
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Questions and Comments
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