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Abstract

Traffic anomalies and attacks are commonplace in today’s networks, and identifying them rapidly and accurately

is critical for large network operators. We propose a High-speed Router-based Anomaly and Intrusion Detection

system, HRAID, leveraging our recent work on data streaming computation and in particular, sketches. We analyze the

attributes in TCP/IP headers and select an optimal small set of metrics for flow-level sketch-based traffic monitoring

and intrusion detection. To overcome the limitations of existing single dimension sketches, we design an efficient and

accurate two-dimensional sketch to distinguish different types of attacks for mitigation. We further propose several

heuristics to reduce the false positive rate for SYN flooding detection. Simulation with several router traces shows

that HRAID is highly accurate, efficient, uses very small memory, and can effectively detect multiple types of attacks

simultaneously. To the best of our knowledge, HRAID is the first online flow-level anomaly/intrusion detection system

for high-speed networks, even for the worst case traffic of 40-byte-packet streams with each packet forming a flow.

I. INTRODUCTION

Traffic anomalies and attacks are commonplace in today’s networks, and identifying them rapidly and accurately is

critical for large network operators. It was estimated that malicious code (viruses, worms and Trojan horses) caused

over $28 billion in economic losses in 2003, and will grow to over $75 billion in economic losses by 2007 [1]. With

the rapid growth of network bandwidth and fast emergence of new attacks/viruses/worms, existing network intrusion

detection systems (IDS) [2–5] are insufficient for the following two reasons.

First, they are mostly host-based and not scalable to high-speed networks. Most existing IDSes reside on sin-

gle host or low-end routers, examining application-level [2], system-level [3] logs, or the sniffed network packets [4,

5] because such detailed information can identify attacks on individual machines. However, today’s fast propagation

of viruses/worms (e.g., SQL Slammer worm) can infect most of the vulnerable machines in the Internet within ten

minutes [6] or even less than 30 seconds with some highly virulent techniques [7, 8]. Thus, it is crucial to identify
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such outbreaks in their early phases, which can only possibly be achieved by detection at high speed backbone routers

instead of at end hosts [9]. Also, the high speed backbone is suggested as a good vantage point for worm contain-

ment [10], for which worm detection on high speed backbone is a crucial prerequisite. Furthermore, for DDoS attacks,

although the end hosts can detect and block them, they still can consume much of the network bandwidth or capacity

causing the network to become unusable. In fact, it is very hard to implement certain detection techniques, such as

those for port scanning, at end hosts. However, the existing schemes are not scalable to the link speeds and number of

flows for high-speed networks.

Given a high-speed router with, e.g., an OC-192 link (10Gbps), each 40-byte TCP packet only has 32 ns to pro-

ceed [11]. Therefore, three performance features are strongly desirable for high-speed network monitoring and in-

trusion detection systems: 1) a small amount of memory usage (to be implemented in SRAM); 2) a small number

of memory accesses per packet [12, 13]; and 3) scalabilty to a large key space size. The last constraint is especially

important for the coming decade: IPv6 with its 128 bit IP address is being adopted, especially in Asia. Thus, the

system should scale to a key space of 2128 or 2256.

Second, most of the existing approaches are signature based, which cannot detect unknown network attacks.

Also, attackers can easily evade such IDSes by changing the attack signatures with polymorphism. Statistical IDSes

are therefore proposed to detect anomalous behaviors. Current systems are mostly designed to detect based on the

overall traffic [14–18]. They therefore tend to be inaccurate or cannot find real attack flows for mitigation even when

spotting anomalies. There are also a few flow-level detection schemes [4, 5, 19], but they are not scalable and thus are

themselves vulnerable to attacks. We compare these schemes with ours in Section II.

To address these challenges, we propose a new paradigm called High-speed Router-based Anomaly and Intrusion

Detection system, HRAID, leveraging the recent work on data streaming computation and in particular, sketches [20,

21]. To the best of our knowledge, HRAID is the first online flow-level anomaly/intrusion detection system for tens of

Gigabit links, even for the worst case traffic of 40-byte-packet streams with each packet forming a flow. Essentially,

we want to detect as many attacks as possible. As the first step towards this ambitious goal, our threat model includes

various port scans (which covers most large-scale worm propagation) and TCP SYN flooding. Our goal is to identify

and distinguish them in real-time on high speed networks, and to obtain the attacks’ key characteristics for mitigating

the attacks. Note that while each of these attacks seems relatively easy to detect separately, or in an offline setting, it is

in fact very hard to detect a mixture of attacks online at flow-level for high-speed networks. As far as we know, none

of the previous work is able to achieve that as discussed in Section II.
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To this end, we leverage and improve sketches, an efficient tool for data streaming computation, to record flow-level

traffic as the basis for statistical intrusion detection. Although proposed in [20, 21], sketch has not been applied to

building intrusion detection systems for the following challenges.

• Sketch can only record certain aggregated metrics for some given keys. For each flow, there are numerous

possible keys: source/destination IP addresses, source/destination ports, source/destination prefixes, protocols,

etc., and any of these combinations. Since it is not feasible to try all possible combinations of the metrics, given

the threat model, what would be the minimal set of metrics for monitoring?

• Existing sketches are all one dimensional, i.e., they can only record the values for a specific metric. However,

various forms of attacks are often hard to detect or identify with such single dimensional information. For

example, both horizontal scans and un-spoofed SYN flooding exhibit large number of unsuccessful connections

aggregated with the (source IP, destination port) pair. However, it is very hard to differentiate them unless the

distribution of the attacks on the destination IPs are also considered.

• Many common network element faults, e.g., congestion/failures, routing misconfigurations, and polluted DNS

entries, can cause the erroneous detection of traffic anomalies through the statistical algorithms. How can these

be separated from attacks to reduce false positives?

In this paper, we address these challenges with the following approaches.

• We analyze the attributes in TCP/IP headers and select an optimal small set of metrics for flow-level

sketch-based traffic monitoring. Time series analysis algorithms like exponentially-weighted moving average

(EWMA) are applied to detect anomalies and intrusions.

• We design efficient two-dimensional sketches to distinguish different types of attacks for mitigation. Both

analytical and empirical results show the effectiveness of the 2-dim sketches.

• We propose several heuristics to separate SYN floodings from network/server congestions and

misconfigurations.

As shown in Figure 1, HRAID detection systems can be implemented as black boxes to attach to high-speed routers

(edge network routers or backbone routers) of ISPs without affecting the normal operations of the routers. They can

enable the early detection of global scale attacks, which is crucial because such attacks can subvert the networking

infrastructure and many hosts instantly with exponential growth.

Detection on edge networks is particularly critical, powerful and efficient (without deploying IDSes on all the edge

hosts), according to a recent research agenda for large scale malicious code by a recent DARPA research agenda [9].
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Fig. 1. Attaching the HRAID systems to high-speed routers. (a) original configuration, (b) distributed configuration for which
each port is monitored separately, (c) aggregate configuration for which a splitter is used to aggregate the traffic from all the ports.

It can be naturally extended for response, especially at the edge networks. That is, when alerted, filters can be auto-

matically constructed to filter classes of traffic, and isolate infected machines. Again, such a scheme is considered as

“powerful and flexible” by [9].

For evaluation, we first use the router traffic traces collected at Lawrence Berkeley National Labs. We then apply

HRAID for on-site detection at the Northwestern University (NU) edge routers: we record each minute of traffic

with reversible sketches on the fly. At the end of each minute, we use the recorded sketches for online detection. In

particular, the one day experiment data consists of 239M network flows of 1.8TB total traffic. We validated the SYN

flooding and port scans detected, and found the HRAID system is highly accurate. The 2-dim sketches successfully

separate the SYN flooding from port scans, and the heuristics effectively reduce false positives of SYN flooding.

The evaluation demonstrates that HRAID significantly outperforms existing approaches like Threshold Random Walk

(TRW) [19] and Change-Point Monitoring (CPM) [15, 16]. Compared with statistical detection with complete flow-

level data logs, we use much less memory, but have almost the same detection accuracy.

The HRAID system runs in real-time, and requires a small number of memory accesses per packet. With a Pentium

Xeon 3.2 GHz machine with normal DRAM memory, we record 239M flows with one reversible sketch in 20.6 seconds,

i.e., 11.6M insertions/second. For the worst case scenario with all 40-byte packets, this translates to around 3.7 Gbps.

Even when we run the three reversible sketches of HRAID in serial, we can still archive 3.8M insertions/second. Our

prototype single FPGA board for reversible sketches can achieve a throughput of over 16Gbps for all 40-byte-packet

streams. For the NU on-site experiments over a total of 1430 minutes, HRAID on average used only 0.34 seconds to

detect intrusions for each minute of traffic, and the standard deviation was 0.64 seconds.

The organization of this paper is as follows. First we survey related work in Section II. In Section III, we introduce

the sketches and reversible sketches as the basis for high-speed network monitoring. We then introduce the HRAID

architecture in Section IV, and discuss the threat model and flow-level monitoring and detection design in Section V.

The two-dimensional sketches are presented in Section VI, and evaluation methodology and results are in Section VII.
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Approaches Spoofed DoS Non-spoofed DoS Horizontal Scan Vertical Scan

HRAID Yes Yes Yes Yes
TRW(AC) No No Yes Yes(AC)

CPM Yes, but with high FP with port scans No No
Backscatter Yes No No No

Superspreader No No Yes No

TABLE I
FUNCTIONALITY COMPARISON OF FOUR APPROACHES.

Finally, we conclude in Section VIII.

II. RELATED WORK

Although some vendors claim to have multi-gigabit statistical IDSes (e.g., Arbor Networks’ Peakflow Traffic [22,

23] and Symantec’s Manhunt [24]), they usually refer to average traffic conditions and use packet sampling [25, 26]

which has two shortcomings. First, sampling is still not scalable, especially after aggregation; there are up to 264

flows even defined only by source and destination IP addresses. Second, long-lived traffic flows, increasingly prevalent

for peer-to-peer applications, will be split up if the time between sampled packets exceeds the flow timeout [25]. In

contrast, HRAID records every packet in the traffic summary, and targets worst-case performance of tens of gigabits,

when all the packets are small, e.g., 40-byte packet streams as in TCP SYN flooding attacks. In a similar spirit,

Alcatel, Cisco and Enterasys Networks recently combined IDSes with their switches to defend against worms and DoS

attacks [27]. They mostly only use signature-based detection, and all their techniques are proprietary.

Many network IDSs like Bro [4] and Snort [5] check packet payload for virus/worm signatures. However, such

schemes are not scalable for high-speed network links. Recently, some works have proposed detecting large scale

attacks, like DoS attacks, port scans, etc., based on the statistical traffic patterns. They can roughly be classified into

two categories: 1) Detecting based on the overall traffic [14–17] and 2) flow level detection [4, 5, 19], e.g., TRW.

With the first approach, attacks can be easily buried in the background network traffic. Thus, such detection schemes

tend to be inaccurate or cannot find real attack flows; For example, CPM [15, 16] will detect port scans as SYN

floodings as verified in Section VII. For the second type, such schemes usually need to maintain a per-flow table (e.g.,

a per-source-IP table for TRW [19]) for detection, which is not scalable and thus provides a vulnerability to DoS attacks

with randomly spoofed IP addresses, especially on high-speed networks. TRW was recently improved by limiting its

memory consumption with approximate caches (AC) [28]. However, spoofed DoS attacks will still cause collisions in

AC, and make the real port scans undetected1.
1As the authors mentioned in [28], when the connection cache size of 1 million entries reaches about 20% full, each new scan attempt has

a 20% chance of not being recorded because it aliases with an already-established connection. Actually, during spoofed DoS attacks, such

collisions can become even worse.
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In short, the existing schemes can detect specific types of attacks, but will perform poorly when facing a mixture of

attacks as in the real world. People may attempt to combine TRW/AC and CPM to detect both scans and SYN flooding

attacks. However, each of these two approaches can work properly only when the other one works well. Thus, it is like

a chicken-and-egg problem. TRW and AC are vulnerable to spoofed DoS attacks, such as SYN flooding, unless CPM

can detect DoS attacks accurately and remove them from the traffic. However, with port scans in the traffic, CPM will

always detect them as SYN floodings. As a result, this combination cannot work.

Table I shows the high-level functionality comparison of our approach to the other methods. Backscatter detects the

SYN flooding attacks by testing the uniform distribution of destination IPs to which the same source (potential victim)

sends SYN/ACK [14]. Thus, it is another flow-level scheme and can only detect spoofed DoS attacks when the source

IP addresses are randomly spoofed. We use that for validating the SYN flooding detected by HRAID.

Venkataraman et al.propose efficient algorithms to detect superspreaders, sources that connect to a large number of

distinct destinations [29]. They can detect horizontal scans and worm propagation, but may have high false positives

with P2P traffic where a single host may connect to many peers for download. PCF was recently proposed for scalable

network detection [18]. It uses similar data structures as an original sketch, and thus is not reversible. So even when

attacks are detected, the attacker or victim is still unknown, making mitigation impossible. Similar to the approaches

discussed before, they do not differentiate from various attacks.

For intrusion classification, Lakhina et al.recently examine the traffic feature distribution with entropy, for all OD

flows between a pair of point of presence (POPs) [30]. Their scheme, however, cannot give the key of culprit flows

for mitigation even when spotting anomalies. Similarly, other recent work [31, 32] use traffic feature distributions or

patterns to classify network flows for anomaly detection, but their methods require the complete flow tables which are

often unavailable for high-speed networks of 10s of Gigabits.

III. BACKGROUND ON SKETCHES FOR HIGH-SPEED NETWORK MONITORING

A. k-ary Sketch

The sketch, a recently proposed data structure, has proven to be useful in many data stream computation appli-

cations [33]. We have designed, implemented and evaluated a variant of the sketch, namely the k-ary sketch [34],

and displayed how to detect heavy changes in massive data streams with small memory consumption, constant up-

date/query complexity, and provably accurate estimation guarantees [34]. It is also flexible and can be applied with

various forecast models to detect anomalies.
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Functions Descriptions k-ary Reversible

sketch sketch
UPDATE(S, y, v) Update the observed sketch in the mornitoring module

√ √
v = ESTIMATE Reconstruct the signal series for statistical detection for a given

√ √
(S, y) key in anomaly detection module

S = COMBINE Compute the linear combination of multiple sketches S =
∑l

k=1
ck.Sk

√ √
(c1, S1,..., ck, Sk) (ci is coefficient.) to aggregate signals in anomaly detection module
Y = INFERENCE Return the keys whose values are larger than the threshold

√
(S, t) in anomaly detection module

TABLE II
FUNCTION OF SKETCHES (S-SKETCH, v-VALUE, y-KEY, Y -SET OF KEYS, t-THRESHOLD).

The input stream arrives sequentially, item by item. Each item consists of a key and an update value. The k-ary

sketch has three basic functions: UPDATE, ESTIMATE and COMBINE. Among them, UPDATE is most frequently

used and has the most stringent real-time requirement. Table II shows the definition of these functions. Suppose there is

a sketch with a source IP as the key and packet size as the value. When a 68-byte packet arrives, the UPDATE function

will increase the value of the corresponding source IP in the sketch data structure by 68. The ESTIMATE function

will return an unbiased estimation of the value (total traffic volume) given a source IP and a sketch. The COMBINE

function can linearly combine several sketches into a single one. The key feature of the COMBINE function is to

support aggregate queries over multiple data streams, i.e., to find the top heavy hitters and their keys from the linear

combination of multiple data streams, for temporal and/or spatial aggregation. Many statistical approaches, such as

Time Series Analysis (TSA), need this functionality for anomaly/trend detection. Moreover, the linearity of reversible

sketches enables traffic aggregation over multiple routers to facilitate distributed detection. With sketches, we can

record hundreds of millions of flows with only a few hundred kilobytes of memory. See [34] for more details.

B. Reversible k-ary Sketch

Although the sketch data structures have good linear properties and can accurately estimate the value for any given

key, they have one major drawback: they are not reversible. That is, a sketch cannot efficiently report the set of all

keys that have large value estimates in the sketch. This means that to compare two streams, we would have to know

which keys to query and the streams with the largest changes. Naively, this would require either exhaustively testing all

possible keys, or recording and testing all data stream keys and corresponding sketches. Unfortunately, neither option

is scalable.

To address these problems, we propose a novel framework for efficiently reversing sketches [20, 21]. The basic

idea is to hash intelligently by modifying the input keys and/or hashing functions so that we can recover the keys with

certain properties intact, such as big changes in a given category, without sacrificing detection accuracy. We also use

a second verifier sketch with 2-universal hash functions to reduce false positives. In fact, we obtain analytical bounds
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Fig. 2. HRAID System architecture.
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Fig. 3. Three types of scans.

on the false positives with this scheme. In addition to the three basic functions of sketches, reversible sketches also

support the INFERENCE function, which will return the keys whose values are larger than a given threshold. Given

the example before, we may want to get all source IPs whose total traffic volume are larger than 1MB in a certain time

period. We just need to record the traffic of that period with reversible sketches, and call the INFERENCE function

to give the list of all such source IPs. Compared with original k-ary sketches, we only add negligible extra memory

consumption (4KB - 8KB) and few (4 to 8) additional memory accesses per packet for the UPDATE function, but we

achieve efficient and accurate INFERENCE function. The other two functions are unchanged. For more details, please

refer to our technical report [21].

IV. ARCHITECTURE OF THE HRAID SYSTEM

Figure 2 shows the architecture of the HRAID system. First, we record the network traffic with sketches using the

UPDATE function. We then apply different time series analysis methods to obtain the forecast sketches for change

detection by the COMBINE function, based on the linearity properties of sketches. The forecast time series analysis

method, e.g., EWMA (exponentially weighted moving average) and Holt-Winter algorithm [35], can help remove

noise. By subtracting the forecast sketch from the current one, we obtain the forecast error sketches. Intuitively, a

large forecast error implies there is an anomaly, thus the forecast error is the key metric for detection in our system.

Moreover, we adopt the two-dimensional sketches to further distinguish different types of attacks, and apply other false

positive reduction techniques as discussed in Section V-C. Finally, we use the key characteristics of the culprit flows

revealed by the reversible sketches to mitigate the attacks.

Here, we apply the EWMA algorithm as the forecast model to do change detection. The following characteristic we

used for detection for EWMA algorithms is the #SYN-#SYN/ACK counted in a certain time interval. Denote M0(t)

as the #SYN-#SYN/ACK at the time interval t, and Mf (t) as the forecasted #SYN-#SYN/ACK at the time interval t,

we have

Mf (t) =















αM0(t − 1) + (1 − α)Mf (t − 1) t > 2

M0(1) t = 2

(1)
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In HRAID, we use COMBINE(α, S0(t − 1), 1 − α, Sf (t − 1)) for implementation, where S0(t) and Sf (t) are the

current sketch and the forecast sketch at the time interval t respectively. The difference between the forecasted value

and the actual value is then used for detection. That is, we use the INFERENCE function to output the set of keys

whose forecast error yt = M0(t) − Mf (t) is larger than some given threshold for detection.

V. THE THREAT MODEL AND DETECTION ALGORITHMS

A. The Threat Model

Ultimately, we want to detect as many different types of attacks as possible. As a first step, we focus on arguably

the two most popular intrusions for detection: TCP flooding denial of service (DoS) attack and port scan/worm

propagation. Actually, our work also can be easily extended to detect UDP or ICMP flooding by using the number

of packets or traffic volume instead of #SYN-#SYN/ACK. We focus on TCP flooding here because it is reported that

more than 90% of DoS attacks are TCP SYN flooding attacks [15, 16].

Scans are probably the most common type of intrusion and many of them are caused by worm propagation. Accord-

ing to statistics data by CERT [36], most existing worms are TCP worms. Most TCP worm propagation starts with

massive TCP connection requests, i.e., port scans. Our system detects generic port scans. Thus, it can detect propaga-

tion for both known and unknown worms. Based on source/destination IP and the port number combinations, there are

three well known types of scans: horizontal scan, vertical scan, and block scan [37, 38] as illustrated in Figure 3.

Unlike DoS attacks, for port scans, the attacker needs to use a real source IP address, since he/she needs to see the

result of the scan in order to know what ports are actually open [37, 38]. Although the “idle scan” allows completely

blind scans, it is based on predictable IP-ID sequence numbers and recent versions of operating systems, such as

OpenBSD, Solaris and Linux, have made the IP-ID sequences less predictable and rendered the attack obsolete [39].

Among the three types of scans in Figure 3, horizontal scans are the most common type of scan, and scan a given

port on IP addresses in some range of interest. The port number is often unique because it reflects the vulnerability

attackers (or the virus/worm) try to exploit. A vertical scan is a scan of some or all ports on a single host. The attacker

is interested in this particular host, and wishes to characterize its active services to find which exploits to attempt [38].

The third type of scan, a block scan, is a combination of horizontal and vertical scans over numerous services on

numerous hosts [38]. Block scan is not very common in practice, thus we focus on horizontal and vertical scans.

B. Sketch-based Detection Algorithm

The challenge then is to detect and differentiate these attacks scalably and accurately, and to get the key character-

istics (e.g., source IPs for scans) of such attacks in order to mitigate them efficiently.
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We denote the key of sketch as K, the feature value recorded in sketch as V, and the reversible sketch as RS(K,V).

Since normally we only extract fields in the IP header, the possible fields we can use are shown in Figure III.

Here, we only consider the attacks in TCP protocol, i.e., the TCP SYN flooding attacks and TCP port scans. Nor-

mally, attackers can choose source ports arbitrarily, so Sport is not a good metric for attack detection. For the other

three fields, we can consider all the possible combinations of them, but the key (SIP, DIP, Dport) can only help

detect non-spoofed SYN flooding, so we do not use it in detection. Figure IV shows the other combinations and their

uniqueness. Here, we define the uniqueness of a key as the capability of differentiating between different types of

attacks, which is measured by the types of attacks that the key metric is related to and can help detect. The best key

would ideally correspond to only one type of attack. Nevertheless, normally a key can be related to several types of

attacks, so we need use more dimensions to differentiate these attacks as shown in Section VI.

the destination IP DIP
the source IP SIP

the destination port Dport
the source port Sport

TABLE III
THE FIELDS IN IP
HEADER USED IN

DETECTION

Types of Keys SYN flooding horizontal scan vertical scan block scan
{SIP,Dport} non-spoofed Yes No Yes
{DIP,Dport} Yes No No No

{SIP,DIP} non-spoofed No Yes Yes
{SIP} non-spoofed Yes Yes Yes
{DIP} Yes No Yes Yes

{Dport} Yes Yes No Yes

TABLE IV
THE UNIQUENESS OF DIFFERENT TYPES OF KEYS.

From Figure IV we can tell that the combinations of two fields have better uniqueness than single fields, so we use

the 3 combinations of two fields as keys for the reversible sketches. Our detection has the following three steps:

Step 1, we use RS({DIP, Dport}, SYN-SYN/ACK) to detect SYN flooding attacks because it usually targets

a certain service as characterized by the Dport on a small set of machine(s). The value of SYN-SYN/ACK means that

for each incoming SYN packet, we will update the sketch by incrementing by one, while for each outgoing SYN/ACK

packet, the sketch will be updated by decrementing by one. In fact, similar structures can be applied to detect any

partial completion attacks [18]. The reversible sketch can further provide the victim IP and port number for mitigation

as in Section V-D. We denote this set of DIPs as FLOODING DIP SET .

Step 2, we use RS({SIP, DIP}, SYN-SYN/ACK) to detect any intruder trying to attack a particular IP ad-

dress. They can be non-spoofed SYN flooding attacks or vertical scans. For each {SIP, DIP} entry, if DIP

∈ FLOODING DIP SET , we put the SIP into the FLOODING SIP SET for the next step; otherwise the

{SIP, DIP} is the attacker and victim of a vertical scan.

Step 3, we use RS({SIP, Dport}, SYN-SYN/ACK) to detect any source IP which causes a large number of

uncompleted connections to a particular destination port. For each {SIP, Dport} entry, if SIP∈FLOODING SIP SET ,
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Attack types {DIP, Dport} {SIP, DIP} {SIP, Dport}
SYN flooding Yes Yes Yes
Vertical scans No Yes No
Horizontal scans No No Yes

TABLE V
DIFFERENT ATTACKS ARE DETECTED IN DIFFERENT REVERSIBLE SKETCHES.

it is a non-spoofed SYN flooding; otherwise, it is a horizontal scan.

Thus altogether, we need three reversible sketches to record the traffic characteristics. The classification rules are

depicted in Table V. In addition to {SYN, SYN/ACK} pairs, other features like {SYN, FIN} pairs or {SYN/ACK,

FIN} pairs can also be applied for detection as discussed in [15, 16]. After the detection, we use the heuristics described

in Section V-C and 2-dim sketches in Section VI to reduce the false positives.

C. Reducing False Positives for SYN Flooding Detection

While port scans are relatively easy to identify with the algorithms above, there can be a number of factors other

than SYN flooding that may cause a particular destination IP and port with a large number of unresponded SYNs. For

instance, flash crowds, network/server congestions/failures, and even polluted or outdated DNS entries may exhibit a

large number of SYNs without SYN/ACK at the edge routers. These will cause relatively high false positives in our

detection scheme. For the flash crowds, it is very hard, if not impossible, to differentiate it from the SYN flooding

attacks without payload information as discussed in [40]. Thus we target reducing the false positives caused by the

other two behaviors listed above.

a) Filters to reduce the false positives caused by bursty network/server congestions/failures: We believe a real

SYN flooding should deny service to a certain degree, e.g., the number of successful connections is less than the

unsuccessful ones. That is, SY N−SY N/ACK
SY N/ACK is greater than one. Moreover, the typical TCP SYN flooding attacks

observed in the Internet last for a certain period, such as 10 minutes [16, 41]. On the other hand, most network

congestions/failures are bursty, which may only last a few seconds or minutes. Based on these two observations, we

introduce two filters to reduce the false positives of SYN flooding detection. The first one is SY N−SY N/ACK
SY N/ACK > 1, and

the second one is lifetime > Thresholdlife (e.g., 10 mins). The system administrators can adjust their threshold to

get the tradeoff between sensitivity and the number of alerts.

To implement the first filter, we added an original sketch OS({DIP, Dport}, SYN) to record the number of

SYNs for each {DIP, Dport} at each time interval. When a SYN flooding suspect is detected, we estimate the

number of its SYNs from the original sketch. Then, based on SY N−SY N/ACK
SY N/ACK > 1 ⇐⇒ SY N−SY N/ACK

SY N > 1

2
, we

use the equivalent condition to decide whether the attack should be filtered.

To implement the second filter, we put any found SYN flooding suspect key into a suspect array of counters. Then,
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for each subsequent interval, we query the SYN and SYN-SYN/ACK value from the related sketches, and increment

the counter if the above inequality holds.

b) Filter to reduce the false positives caused by misconfigurations or related problems: Usually, a SYN flooding

attack will be launched towards some server which provides certain (popular) services. However, we found that some

victims of detected SYN flooding are non-existing IPs or some hosts without any services on the ports being flooded.

Moreover, the size of packets is small, so they are not bandwidth consumption attacks. Such anomalies look more

like mistakes than real attacks. These may be caused by misconfigrations. For example, some administrators may

misconfigure the DNS entry for a popular server as a non-existing IP or some IP which does not run the particular

service. Some automatic connection software then may keep trying to connect to that server. Another possibility is

that a DNS entry is updated, but the TTLs for the DNS entries are set/misconfigured to be very long, so the clients may

still try to connect to the old IP which may not have the service open anymore.

When evaluating HRAID with the LBL and NU data as discussed in Section VII, we did find several such scenarios.

For instance, in LBL data, we found there was a SYN flooding like anomaly towards a certain IP with large #SYN-

#SYN/ACK. The anomaly lasted for 3 hours, but there were no good connections towards that IP during the day, before

or after the anomaly. Thus, this is unlikely to be a real SYN flooding attack. Based on such observations, we can design

another false positive reduction heuristic by filtering those anomalies for which the victim does not have any response

to SYN requests during the recent 24 hour period. Due to the linearity of sketches, we can add up the sketches in the

past 24 hours, and then estimate the number of SYN/ACK for the suspect {DIP, Dport}. If the number is less than

a given threshold, e.g.100, it will not be considered as an attack. Note that we already have sketches to record SYN

and (SYN-SYN/ACK), so no extra sketches are needed to record SYN/ACK for the monitoring phase.

D. Intrusion Mitigation

The HRAID system can instruct routers or system administrators to mitigate the attacks based on the attack type

and their key characteristics as obtained from reversible sketches. For distributed SYN flooding, we can start the SYN

defender [42], SYN proxy and/or SYN cookies [43] for the particular victim machines and applications to alleviate the

DoS effects. Other DoS attack mitigation schemes [44] can also be applied. For port scans and point-to-point SYN

flooding, we can use an ingress filter to block the traffic from the attacker IP. For vertical scans, we can quarantine the

victim machine for further inspection. For horizontal scans, we can pay particular attention to any suspicious internal

or outgoing traffic with the same port number since the compromise of any internal machine means it will probably try

to infect more machines within the network.
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VI. INTRUSION CLASSIFICATION WITH TWO DIMENSIONAL SKETCH

One major challenge for anomaly detection is that the traffic anomalies are often multidimensional (i.e., they can

only be identified when we examine traffic with specific combinations of IP addresses, port numbers, and protocols).

For example, if the port distribution of a particular attack is unknown, it becomes very hard to distinguish non-IP-

Spoofing SYN flooding attacks from vertical scans because both of them will exhibit a single (or a small number)

of source IPs sending a large number of un-responded SYN packets to the destination IP. The key difference lies in

whether the attacker sends to a small number (e.g., one or two) of ports (SYN flooding) or many different ports (vertical

scan) on the destination. In other words, there is a bi-modal distribution for the number of unique ports visited when

there are a large number of un-responded SYN/ACK packets from one source to one destination. That is, one mode

corresponds to the SYN flooding, and the other, vertical scans. This bi-modal assumption is verified with real network

traffic in Section VI-A. Thus it is essential to know the port distribution, given a specific source IP and destination IP

pair{SIP,DIP}, to distinguish between these two attacks. However, existing sketches are all of single dimension. To

address this challenge, we design a novel two-dimensional (2D) k-ary sketch and apply it for intrusion classification

in Section VI-B.

A. Verification of the Bi-modal Distribution for SYN flooding vs. Port Scans
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Fig. 4. The distribution of the number of attacks with re-
spect to the number of unique ports visited when there are more
than 50 un-responded SYNs in 1-minute interval between one
{SIP,DIP} pair. Left: NU, right: Fermi Lab
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Fig. 5. The distribution of the number of attacks with respect
to the number of unique destination IPs visited when there are
more than 100 un-responded SYNs in 1-minute interval with
one SIP,Dport pair. Left: NU, right: Fermi Lab

We tested the bi-modal assumption with one-month edge router traffic from Northwestern University (NU) and

Fermi Lab. With samples of two-hour NU data and one-day Fermi data, Figure 4 shows the distribution of the number

of attacks with respect to the number of unique ports visited when there is more than 50 un-responded SYNs in a 1-

minute interval from one source to one destination. There is a clear bi-modal distribution to distinguish SYN flooding

attacks from vertical scans. The former usually have the number of ports visited at less than three. Similarly, there

is also a bi-modal distribution between SYN flooding attacks and horizontal scans. That is, SYN flooding attacks

have a very small number of destination IPs, while horizontal scans have a much larger amount. Figure 5 shows the
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distribution of the number of attacks with respect to the number of unique destination IP addresses visited when there

are more than 100 un-responded SYNs in a 1-minute interval from one source to one destination port. Note that in the

graph for NU, there is only one mode because there is no SYN flooding attack in the two hour NU traffic.

B. Two-dimensional Sketch Design and Intrusion Classification

h � (S I P ,D I P ) h � (S I P ,D I P ) h � (S I P ,D I P )

H two-d i m e n s i on a l  
h a s h  m a tr i x
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Fig. 6. Diagram of the two-dimensional k-ary sketch
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Fig. 7. An example of UPDATE operation
for two-dimensional sketch

For the 2D k-ary sketch, instead of using H independent one-dimensional hash tables, we use H independent

2D hash tables (matrices), as shown in Figure 6. Let Kx and Ky denote the number of buckets for each dimension

respectively. For each 2D hash matrix, we hash two groups of fields into it. Consider the previous example of separating

SYN flooding attacks from vertical scans. The x dimension is the concatenation of SIP and DIP, and the y dimension

is Dport. For each packet, we locate its corresponding entry in the matrix by two independent hash mappings as

shown in Figure 7, and update the bucket in the same manner as for reversible sketches in Section V-B. Similarly, we

can update all H matrices for data stream recording.

In the detection stage, after finding an attack by using reversible sketch or any other method (i.e., the {SIP,DIP}

is known), we can use the column of buckets in the hash matrix selected by the {SIP,DIP} to infer the distribution

of Dport and pinpoint the type of attack, e.g., a SYN flooding or a vertical scan. The algorithm is as follows. For

each 2D hash matrix, the {SIP,DIP} pair selects a column of buckets. We then obtain the sum of the top p (e.g.,

5 out of 64) buckets with the largest values. If the sum is larger than φ (φ < 1, e.g., 0.8) times the total sum in all

buckets B, then we regard it as a SYN flooding. If the majority of the H hash matrices of the 2D sketch imply it is a

SYN flooding, we conclude it is a SYN flooding attack; otherwise we conclude it is a vertical scan. Similarly, we can

differentiate horizontal scans from the SYN flooding attacks.

C. Accuracy Analysis

An important issue with using the bi-modal distribution to separate SYN flooding attacks versus vertical scan attacks

is the possibility of misclassification. The concern is that, by chance, a vertical scan attack could be hashed among

the Ky buckets of a given column in a hash matrix such that a large number of attacked ports hash to just a single

bucket, while the remaining attacked ports are spread out among many different buckets. Such a clumping would
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cause the detection algorithm to report a SYN flooding attack rather than the correct vertical scan attack (note that the

reverse problem of misclassification should not be an issue). Alternatively, it is possible that a SYN attack key and a

vertical scan attack key happen to hash to the same column. In such a case, since the hash table can only return SYN

or vertical scan for the given column, it will be wrong. To address these issues, we first bound the probability of the

first type of misclassificiation assuming that the given column has been hit by only one type of attack. We will then

bound the likelihood of such a column being hit by two separate attacks to get a final bound on the probability of a

misclassification.

To bound the probability of the first type of misclassification, we use the Generalized Increment-Decrement Counter

Model [18]. If one SYN packet hashes to the bucket (counter), the counter increases by one; if one SYN/ACK packet

hashes to the counter, the counter decreases by one. At the end of a sufficiently large amount of time called a measure-

ment interval, T (e.g., 1 minute), the counter should accumulate all the packets hashed to it to get the outcome value

N . Now, for all normal traffic, there will be an equal number of SYN’s and SYN/ACK’s, thus contributing a total of

zero to the hash matrix (this is not always true, but given a large enough measurement window and high volume traffic,

it is approximately true).

Now, consider a column of the hash matrix that is hashed to by one single vertical scan key. We will assume that a

vertical scan sends exactly c SYN’s (for simplicity, assume c = 1) to B different ports. Thus, the total traffic for the

target column will be B, and our algorithm will report the column as a SYN attack if the sum of the top p buckets Sp

exceeds φB. Assuming uniformly random hash functions, we get the following bound on misclassification.

Lemma 1: Given a column of a hash matrix whose total SYN value comes from a single vertical scan key, the

probability of misclassification is

Pr[Sp > φB] ≤ Kye
−2δ2

B

where δ = B
p (φ − p

Ky
).

Proof: Let Xi be a random variable denoting the total traffic in bucket i of a given column. As each Xi is a

binomial variable with mean B
Ky

, from the Chernoff bound we get that

Pr[Xi >
B

Ky
+ δ] < e

−2δ2

B

For the largest Xi, Xmax, we thus get

Pr[Xmax >
B

Ky
+ δ] < Kye

−2δ2

B
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Further, we know that if the sum of the top p buckets Sp exceeds p( B
Ky

+ δ), then by the pigeon hole principle at least

one Xi must exceed B
Ky

+ δ, yielding the following inequality.

Pr[Sp >
B · p
Ky

+ pδ] < Kye
−2δ2

B

By setting δ = B
p (φ − p

Ky
) we get the desired inequality.

Having bounded the possibility of misclassification assuming only one attack for a given bucket, we now consider

the probability of actually getting this scenario. Let f and v denote the total number of SYN flood attacks and vertical

scan attacks within a measurement interval T respectively. First, we will bound the probability of misclassifying a

vertical scan. For a given key that constitutes a vertical scan, the key will be correctly categorized in any given hash

matrix according to Lemma 1 unless a SYN flood attack key j also hashes to the same bucket (multiple vertical scans

in a single bucket will still register as a vertical scan). Combining the probability of such a collision with Lemma 1

yields the following lemma.

Lemma 2: The probability that a given hash matrix h correctly classifies a vertical scan key k is

P [correcth] ≥ S = (
Kx − 1

Kx
)f (1 − error)

where error = Kye
−2δ2

B as stated in Lemma 1.

Proof: The probability of one or more of the f SYN flood keys hashing to a single given bucket is ( Kx−1

Kx
)f .

Combining this event with Lemma 1 yields the result.

We can now use this lemma to derive the probability of failure for our algorithm that takes the majority result of the

H hash tables.

Theorem 1: Given a key k that constitutes a vertical scan, the majority of the H hash tables will classify k as a

vertical scan attack with probability at least

H
∑

r=bH
2
c+1

(

H

r

)

Sr(1 − S)H−r

where S = (Kx−1

Kx
)f (1 − error) and error is the value stated in Lemma 1.

Proof: The result follows from observing that the total number of correct hash matrices is a binomial variable

with probability of success equal to S by Lemma 2.

Theorem 2: Given a key k that constitutes a SYN flooding, the majority of the H hash tables will classify k as a

SYN flooding attack with probability at least

H
∑

r=bH
2
c+1

(

H

r

)

Sr(1 − S)H−r
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where S = (Kx−1

Kx
)f+v.

Proof: The number of correct hash matrices is a binomial variable, so it is sufficient to show that the probability

of successful classification for any given matrix is at least S. As discussed previously, A SYN attack can only be

misclassified if there is a collision among attack keys. Thus, this constitutes a lower bound on the correct classification

for a given matrix.

As an example of the bounds provided by Theorems 1 and 2, consider the following typical values. For p = 5,

φ = 0.8, Kx = 4096, Ky = 64 (these configurations are also adopted in the evaluation of Section VII), B = 200,

f = 5, and v = 5, we get that a vertical scan will be detected with probability at least 99.9956% and a SYN attack will

be classified correctly with probability at least 99.99999%. Note that the larger B is, the larger these probabilites are.

We can achieve similar misclassification bounds for reporting a horizontal scan as a SYN flooding and vice versa.

VII. EVALUATION

A. Evaluation Methodology

In this section, we evaluate HRAID with both simulation and on-site experiment.

• We use the router traffic traces collected at the Lawrence Berkeley National Laboratory (LBL) for simulation.

The one-day trace consists of about 900M netflow records. Unfortunately, the sampling rate is unknown.

• We apply HRAID for on-site detection at the Northwestern University (NU, which has several Class B

networks) edge routers. The router exports netflow data continuously which are recorded with sketches of

HRAID on the fly. At the end of each minute, HRAID detects intrusions online as shown in Figure 2. We also

record the complete netflow records for detection comparison. The one day experiment in May 2005 consists of

239M netflow records. The total traffic is 1.8TB. The average packet rate is 37K/s and the peak packet rate is

79K/s. The flows were constructed from packet sampling at a 1:1 rate.

Unless denoted otherwise, the default time interval for constructing the time series for detection is one minute.

The evaluation metrics include detection accuracy (in terms of the true positive and false positive percentages),

execution speed, the amount of memory access per packet, and the amount of memory used in the recording stage.

The HRAID system consists of 1) three reversible sketches (RS), one for {SIP,Dport}, one for {DIP,Dport},

and the other for {SIP,DIP}, 2) one original sketch (OS) for {DIP,Dport}, and 3) two 2D sketches for {SIP,Dport}

× {DIP} and {SIP,DIP} × {Dport}. For all the RS and 2D sketches we update #SYN - #SYN/ACK as the value,

and only for the OS, we use #SYN as the value.
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The following parameters are chosen based on systematic study as in [21, 34]. We adopt 6 stages for each RS and

OS, and 5 stages for each 2D sketch in our system. We use 212 buckets for each stage in 48-bit RS, 216 buckets for

each stage in the 64-bit RS, and 214 buckets for all their verification sketches. 214 buckets are applied for each stage in

OS. We also use 212 × 64 buckets for each stage of the 2D sketches. Therefore, the total memory is 13.2MB.

Both NU and LBL have a large amount of traffic, so we set the detection threshold to be one scan per second for both

horizontal and vertical scans, and one un-responded SYN packet per second for SYN flooding attacks. The thresholds

can be adjusted by network administrators.

To evaluate the accuracy of the HRAID system, we take the following steps. First, we solely evaluate the error

introduced by the sketches (Section VII-B). Second, we compare the HRAID system with several existing network

intrusion detection approaches (Section VII-C). Finally, we manually validate the attacks we detected in Section VII-D.

B. Sketches Highly Accurate in Recording Traffic for Detection

Table VI shows the results when using EWMA as the forecasting method. There are three phases. We first detect

attacks using reversible sketches with algorithms described in Section V-B. The results are shown as “Raw results” in

Table VI. We then use 2D sketches to reduce the false positives for port scans introduced by SYN floodings, and get

results in the column of “Phase 2” of Table VI. Finally, we use heuristics in Section V-C to reduce false positives of

SYN flooding and the results are presented as “Phase 3”.

Traces Attack
type

Phase1:
Raw
results

False positive reduction
Phase2: Phase3:

Port scan Flooding

NU
SYN flooding 157 157 32

Hscan 988 936 936
Vscan 73 19 19

LBL
SYN flooding 35 35 0

Hscan 736 699 699
Vscan 40 1 1

TABLE VI
DETECTION RESULTS UNDER THREE PHASES.

To evaluate the errors introduced by sketches, we

compare the results obtained from the same detection

algorithm but with two different types of traffic record-

ing: 1) sketches; 2) accurate flow table to hold per-flow

information (we call it non-sketch method). We found

that we detect exactly the same attacks for the two con-

figurations with very different amount of memory (see

memory consumption discussion in Section VII-E). This shows that sketches are highly accurate in recording the

traffic for detection.

C. HRAID Outperforms Other Existing Network IDSes

We compare our approach with other state-of-the-art network intrusion detection approaches as introduced in Sec-

tion II: TRW [19] for port scan detection and CPM [15, 16] for SYN flooding detection.
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Table VII shows the comparison results of our methods with TRW for horizontal scan detection. In TRW, the

horizontal scans from the same source IP but to different ports are counted as only one attack. Thus, we aggregate

the horizontal scans detected by HRAID with the source IP address. We observe that the scans detected by these

two methods have very good overlap, except for a few special cases. There are a small number of horizontal scans

detected by HRAID but not TRW due to the following reasons. Some attacks have both successful connection attempts

and unsuccessful connection attempts. TRW gives each attempt different weights and multiplies them together for

detection. If the product value is higher than a certain threshold, it will be identified as a port scan. In some cases,

although the number of unsuccessful connections is fairly large, more than 500, they still have several successful

connections, such as 100 to 150. TRW is not sensitive to this kind of abnormal behavior. In fact, we should consider

these behaviors as abnormal ones, or at least suspicious ones.

Meanwhile, there are a very small number of scans detected by TRW but not HRAID. They are caused by some

scenarios as follows. The attackers scan multiple hosts, and for different hosts, they scan at different ports. When

aggregated by either {SIP, DIP} or {SIP, Dport}, the number of scans is relatively small and less than our

threshold. But TRW aggregates the scan by source IP and counts the number of unique destination IP’s for detection,

and thus will detect such behavior. We are not aware of any worms using such scans for propagation. It seems more

like a combination of multiple small scans. Since the number of scans to each port and the number of scans to each

host are small, the overall effect of such scans is still relatively small, i.e., not a major attack. It is part of our future

work to further investigate such problems.

Next, we compared our method with CPM for SYN flooding attack detection. The results are shown in Table VIII.

Note that CPM detection is based on overall traffic, but not on each flow, so it can only report that for each interval

whether there is an attack or not. For a fair comparison, we also count the number of intervals that SYN flooding

detected by HRAID spans on (not the real number of attacks) and include them in Table VIII.

In the LBL traces, there is no SYN flooding, but a very large number of scans. As discussed before, CPM cannot

differentiate them, so it treats all the scans as SYN flooding and has very high false positives. On the other hand,

CPM and HRAID have very similar results for the NU data because the port scans are mixed with SYN flooding for

Data TRW HRAID Overlap number
NU 497 512 488
LBL 695 699 692

TABLE VII
HORIZONTAL SCANS DETECTION COMPARISON OF
HRAID AND TRW AGGREGATED BY SOURCE IP.

Data CPM HRAID Overlap number
NU 1422 1427 1422
LBL 1426 0 0

TABLE VIII
TCP SYN FLOODING DETECTION COMPARISON OF

HRAID AND CPM.
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each interval, and thus the port scans do not cause any false positives for CPM. Meanwhile, there is a small number of

intervals in which SYN flooding is buried in the rest of the normal traffic, which have large numbers of normal SYN

and SYN/ACK packets from the traffic of other hosts, and thus for the total traffic SY N−SY N/ACK
SY N/ACK < 1, meaning CPM

cannot detect them.

D. Detected Intrusions Successfully Validated

In the previous section, we compare HRAID with other statistical detection methods. But, it does not show whether

the attacks detected are the real ones. In this section we manually examine a certain number of attacks for validation.

1) SYN Flooding: We validate our SYN flooding detection results with backscatter [14] because the Anderson-

Darling A2 uniformity test in backscatter is a very strong one and can hardly reach the significance level 0.05 if

they are not uniformly distributed. However, backscatter has one limitation: it only checks the reply traffic from the

victim, and assumes that each attack packet is replied by the victim, which is not valid in many cases (observed from

our netflow data as well). Furthermore, our evaluation is to detect attacks in the incoming traffic. Thus, we tweak

backscatter a bit, to check the incoming SYN traffic, and test the uniform distribution of the source IPs if they are

all towards the same destination IP and the total number of such source IPs are large enough. Among the 32 SYN

floodings detected, there are 21 matched with backscatter results. For the other 11 attacks, three have uniformity

values very close to the threshold, Anderson-Darling A2 test with significance level 0.05 [14]. Another three have IP’s

spoofed in some regular manner. For instance, one has the IP address spoofed as: 1.0.0.*, 1.0.1.*, 1.0.255.*, 2.0.0.*,

etc.. But the distribution of such addresses does not satisfy the uniformity test. The remaining five attacks are hard to

validate with only packet headers. But nowadays many DoS attacks are launched with botnet using un-spoofed IP’s

because ISPs tend to drop randomly spoofed packets through ingress filtering.

2) Horizontal Scans: We manually validate horizontal scans, in particular, the top 10 and bottom 10 attacks in terms

of their change difference. Table IX shows the top 10 horizontal scans for the NU experiment, whose SYN-SYN/ACK

change count ranges from 24,000 to 60,000. Table X shows the bottom 10 horizontal scans, whose SYN-SYN/ACK

change count ranges from 60 to 64. Table XI and Table XII demonstrate the top 10 and bottom 10 horizontal scans for

the LBL trace. Through these evaluation table, we find that they are all possible attacks, including Nachi or MSBlast

worm, SQLSnake worms, W32.Sasser, SSH scans, etc.. There are even some unknown worm scans detected by us,

and also confirmed in the Dshield [45], the largest worldwide intrusion log repository.

3) Vertical Scans: We also manually validate vertical scans for both the LBL trace and the NU experiment. In

the LBL trace, we found one vertical scan. It scanned some well-known service ports, such as HTTPS(81), HTTP-
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Anonymized SIP Dport #unique DIP Cause
204.10.110.38 1433 56275 SQLSnake scan
5.4.247.103 1433 54788 SQLSnake scan

15.38.124.150 1433 46586 SQLSnake scan
5.64.27.226 1433 45981 SQLSnake scan

109.132.101.199 22 45014 Scan SSH
95.30.62.202 3306 25964 MySQL Bot scans
162.39.147.51 6101 24741 Unknown scan
15.192.50.153 4899 23687 Rahack worm
15.82.184.106 4899 19794 Rahack worm

5.55.96.69 1433 19217 SQLSnake scan

TABLE IX
TOP 10 OF HORIZONTAL SCANS IN NU EXPERIMENT.

Anonymized SIP Dport #unique DIP Cause
98.198.251.168 135 64 Nachi or MSBlast worm

3.66.52.227 445 64 Sasser and Korgo worm
20.128.114.246 445 64 Sasser and Korgo worm

2.0.28.90 139 64 NetBIOS scan
91.115.92.212 445 64 Sasser and Korgo worm
98.198.0.101 135 64 Nachi or MSBlast worm
162.8.171.169 139 62 NetBIOS scan
82.203.230.86 135 62 Nachi or MSBlast worm
165.5.42.10 5554 62 Sasser worm

189.75.216.218 139 62 NetBIOS scan

TABLE X
BOTTOM 10 OF HORIZONTAL SCAN IN NU EXPERIMENT.

Anonymized SIP Dport #unique DIP Cause
352841 1433 16014 SQLSnake scan
251293 21 10360 FTP scan
199707 80 7893 HTTP scan
295205 80 7536 HTTP scan
346376 80 6980 HTTP scan
347333 80 6935 HTTP scan
312475 21 5892 FTP scan
447394 1433 5875 SQLSnake scan
285091 4000 5775 SkyDance worm
227176 554 5660 RTSCP scan

TABLE XI
TOP 10 HORIZONTAL SCANS IN THE LBL TRACE.

Anonymized SIP Dport #unique DIP Cause
191136 135 67 Nachi or MSBlast worm

4698 135 67 Nachi or MSBlast worm
432940 135 66 Nachi or MSBlast worm
219400 135 66 Nachi or MSBlast worm
253855 135 66 Nachi or MSBlast worm
445247 135 66 Nachi or MSBlast worm
81248 135 66 Nachi or MSBlast worm

218603 135 64 Nachi or MSBlast worm
98802 135 64 Nachi or MSBlast worm

208650 139 26 NetBIOS scan

TABLE XII
BOTTOM 10 HORIZONTAL SCANS IN THE LBL TRACE.

Proxy(8000,8001,8081). In the NU experiment, we found in total 19 vertical scans. We manually checked the top 5

and bottom 5 vertical scans in terms of the ports they scanned. We found the vertical scans are mostly interested in

the well known service ports and Trojan/BackDoor ports. For the well know services ports, most of them scanned:

HTTP(80), FTP(21), RTSP(554), Cache(3128) etc.. Moreover, most attacks are also interested in Trojan/BackDoor

ports. For example, WinHole(808,1082), Slapper(1978), SubSeven 2.1(7000), Tini(7777), OpwinTRojan(10000), etc..

All these characteristics drive us to believe that these vertical scans are real scans.

E. Evaluation Results for Online Performance Constraints

1) Small Memory Consumption: It is very important to have small memory consumption for online traffic recording

over high-speed links, to make use of the fast SRAM and for potential implementation in specialized hardware e.g.,

FPGA or ASIC. In our experiments, we only use a total memory of 13.2MB for traffic recording. Note that such

settings works well for a large range of link speeds, as we tried on different network traces. Sketch can report heavy

changes and heavy hitters with the statistical accuracy bounds given in [20, 34].

On the other hand, if hash tables are used to record every flow, much larger memory is required as shown in

Table XIII. We consider the worst-case traffic of all-40-byte packet streams with 100% utilization of the link capacity.

There is a spoofed SYN flooding attack with a different source IP (and maybe even different destination IP) for each

packet. For the method without sketch, it needs at least three hash tables corresponding to the three reversible sketches
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Methods 2.5Gbps 10Gbps
1sec 1min 5min 1sec 1min 5min

HRAID with sketch 13.2M 13.2M
HRAID with complete info 171.875M 10.3G 51.6G 687.5M 41.25G 206G

TRW 93.75M 5.63G 28G 375M 22.5G 112.5G

TABLE XIII
MEMORY COMPARISON(BYTES).

in our detection methods. For each packet, at least a new entry will be added to both the {SIP,DIP} table and the

{SIP,Dport} table. Every entry of the hash table needs 6 to 8 bytes to store the key (e.g., SIP and DIP) and another 4

bytes to store the value. For example, when the bandwidth is 2.5Gbps, for one second, the total memory consumption

is (2.5G/(8 × 40)) × (12 + 10)=171.875MB. For TRW, for each {SIP,DIP} pair, it maintains a likelihood ratio

which is updated based on observed SYN and SYN/ACK. Thus, for the example above, the total memory consumption

is (2.5G/(8× 40))× 12=93.75MB. Thus, both of the methods will run out of memory very quickly in these scenarios.

2) Small Memory Access per Packet for Online Monitoring: There are 15 memory accesses per packet for 48 bit

reversible sketches and 16 per packet for 64-bit reversible sketches (see [21] for details). For each two-dimensional

sketche, we only need 5 memory accesses per packet, one for each 2D hash matrix. Thus, when recording these

sketches in parallel or in pipeline, the HRAID system has a very small number of memory accesses per packet and is

capable of online monitoring.

3) Traffic Monitoring and Intrusion Detection with High Speeds: The HRAID system is composed of the three

reversible sketches and two 2D sketches. The speed of 2D sketches is much faster than that of the reversible sketches.

Thus, the speed is dominated by the latter. For a real HRAID system, we will implement it in hardware so that multiple

sketches can be updated in parallel. With our prototype single FPGA board implementation, we are able to sustain

16.2 Gbps throughput for recording all-40-byte packet streams (the worst case) with a reversible sketch.

We can also use multi-processors to record multiple sketches simultaneously in software. With a Pentium Xeon

3.2 GHz machine with normal DRAM memory, we record 239M items (1.8TB, 1-day NUIT data) with one reversible

sketch in 20.6 seconds, i.e., 11M insertions/sec. For the worst case scenario with all 40-byte packets, this translates

to around 3.7 Gbps. These results are obtained from code that is not fully optimized and from a machine that is not

dedicated to this process. If we update the three reversible sketches serially, we can still archive 3.8M insertions/sec.

For the on-site NU experiments covering a total of 1430 minutes, HRAID used 0.34 seconds on average to perform

detection for each one-minute interval, and the standard deviation is 0.64 seconds. The maximum detection time (for

which the interval contains the largest number of attacks) is 12.91 seconds, which is still far less than one minute.
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VIII. CONCLUSION

In this paper, we propose a High-speed Router-based Anomaly and Intrusion Detection system, HRAID, leveraging

the recent work on sketches. Experiments with several router traces show that HRAID is highly accurate, efficient,

uses very small memory, and can effectively detect multiple types of attacks simultaneously.
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