
Flexible Word Design and Graph Labeling�

Ming-Yang Kao, Manan Sanghi, and Robert Schweller

Department of Electrical Engineering and Computer Science
Northwestern University
Evanston, IL 60208, USA

{kao, manan, schwellerr}@cs.northwestern.edu

Abstract. Motivated by emerging applications for DNA code word de-
sign, we consider a generalization of the code word design problem in
which an input graph is given which must be labeled with equal length
binary strings of minimal length such that the Hamming distance is
small between words of adjacent nodes and large between words of non-
adjacent nodes. For general graphs we provide algorithms that bound the
word length with respect to either the maximum degree of any vertex
or the number of edges in either the input graph or its complement. We
further provide multiple types of recursive, deterministic algorithms for
trees and forests, and provide an improvement for forests that makes use
of randomization.

1 Introduction

This work can be viewed either as a generalization of codeword design or a special
restricted case of the more general graph labeling problem. The problem of graph
labeling takes as input a graph and assigns a binary string to each vertex such
that either adjacency or distance between two vertices can be quickly determined
by simply comparing the two labels. The goal is then to make the labels as short
as possible (see [14] for a survey). Early work in the field [8, 9] considered the
graph labeling problem with the restriction that the adjacency between two
nodes must be determined solely by Hamming distance. Specifically, the labels
for any two adjacent nodes must be below a given threshold, while the nodes
between non-adjacent nodes must be above it.

We return to this restricted type of graph labeling motivated by growing
applications in DNA computing and DNA self-assembly which require the design
of DNA codes that exhibit non-specific hybridization. A basic requirement for
building useful DNA self-assembly systems and DNA computing systems is the
design of sets of appropriate DNA strings (code words). Early applications have
simply required building a set of n equal length code words such that there is
no possibility of hybridization between the words or Watson Crick complement
of words [1, 4, 6, 7, 18, 23]. Using hamming distance as an approximation to how
well a word and the Watson Crick complement of a second word will bind,
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Table 1. Summary of our results

Word Length

Lower Bound Upper Bound

General Graphs O(γD̂ + D̂n)
(Matching Algorithm) Ω(γ + n) Theorem 3

General Graphs Theorem 1 O(
√

γ2m̂n + γm̂n2)
(StarDestroyer) Theorem 4

Forests Ω(γ + log n) O(γD log(max{f, n
γD
}))

(Randomized) Theorem 2 Theorem 8

G : input graph (V, E) m : number of edges in G

G : complement of G m̂ : smaller of the number of edges in
G or G

D : highest degree of any vertex in G n : number of vertices in G

D̂ : smaller of the highest degree of any
vertex in G or G

f : maximum number of leaves in any
tree in the input forest

γ : Hamming distance separation

such a requirement can be achieved in part by designing a set of n words such
that the Hamming distance between any pair in the set is large. There has
been extensive work done in designing sets of words with this and other non-
interaction constraints [5, 6, 10–13,15–18,21].

While the Hamming distance constraint is important for applications requiring
that no pair of words in a code hybridize, new applications are emerging for
which hybridization between different words in a code word set is desirable and
necessary. That is, there is growing need for the efficient design of DNA codes
such that the hybridization between any two words in the code is determined
by an input matrix specifying which strands should bond and which should not.
Aggarwal et al. [2, 3] have shown that a tile self assembly system that uses a set
of glues that bind to one another according to a given input matrix, rather than
only binding to themselves, greatly reduces the number of distinct tile types
required to assemble certain shapes. Efficient algorithms for designing sets of
DNA strands whose pairwise hybridization is determined by an input matrix
may permit implementation of such tile efficient self-assembly systems.

Further, Tsaftaris et al. [19, 20] have recently proposed a technique for apply-
ing DNA computing to digital signal processing. Their scheme involves designing
a set of equal length DNA strands, indexed from 1 to n, such that the melting
temperature of the duplex formed by a word and the Watson Crick complement
of another word is proportional to the difference of the indices of the words.
Thus, this is again an example in which it is desirable to design a set of DNA
words such that different words have varying levels of distinctness from one
another.
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Given an input graph G, we consider the problem of constructing a labeling
such that the Hamming distance between labels of adjacent vertices is small,
the Hamming distance between non-adjacent vertices is large, and there is a
separation of at least γ between the small Hamming distance and the large
Hamming distance. Breuer et al.[8, 9] first studied this problem for the special
case of γ = 1 and achieved labels of size O(Dn) for general graphs, where D
is the degree of the node with the highest degree. By combining graph decom-
positions with codes similar in spirit to Hadamard codes from coding theory,
we get a labeling of length O(γD̂ + D̂n) where D̂ is the smaller of the degree
of the maximum degree node in G and its complement. We then explore more
sophisticated graph decompositions to achieve new bounds that are a function
of the number of edges in G. We also consider the class of trees and forests and
provide various recursive algorithms that achieve poly-logarithmic length labels
for degree bounded trees. Our forest algorithms also make use of probabilistic
bounds from traditional word design to use randomization to reduce label length.
Our results are summarized in Table 1.

Paper Layout: In Section 2, we introduce basic notation and tools and formulate
the problem. In Section 3, we describe techniques for obtaining a restricted type
of labeling for special graphs. In Section 4, we describe how to combine special
graph labelings to obtain algorithms for labeling general graphs. In Section 5,
we present recursive algorithms for labeling forests. In Section 6, we conclude
with a discussion of future research directions. In the interest of space proofs
and some algorithmic details are omitted in this version.

2 Preliminaries

Let S = s1s2 . . . s� denote a length � bit string with each si ∈ {0, 1}. For a bit s,
the complement of s, denoted by sc, is 0 if s = 1 and 1 if s = 0. For a bit string
S = s1s2 . . . s�, the complement of S, denoted by Sc, is the string sc

1, s
c
2 . . . sc

�.
For two bit strings S and T , we denote the concatenation of S and T by S · T .

For a graph G = (V, E), a length � labeling of G is a mapping σ : V → {0, 1}�.
Let deg(G) denote the maximum degree of any vertex in G and let Ḡ = (V, Ē)
denote the complement graph of G. A γ-labeling of a graph G is a labeling σ
such that there exist integers α and β, β − α ≥ γ, such that for any u, v ∈ V
the Hamming distance H(σ(u), σ(v)) ≤ α if (u, v) ∈ E, and H(σ(u), σ(v)) ≥ β if
(u, v) /∈ E. We are interested in designing γ-labelings for graphs which minimize
the length of each label, length(σ).

Problem 1 (Flexible Word Design Problem).
Input: Graph G; integer γ
Output: A γ-labeling σ of G. Minimize � = length(σ).

Throughout this paper, for ease of exposition, we will assume the Hamming
distance separator γ is a power of 2. For general graphs in Sections 3 and 4 we
also assume the number of vertices n in the input graph is a power of 2. These
assumptions can be trivially removed for these cases.



Flexible Word Design and Graph Labeling 51

Theorem 1. The required worst case label length for general n node graphs is
Ω(γ + n).

Theorem 2. The required worst case label length for n node forests is Ω(γ +
log n).

An important tool that we use repeatedly in our constructions is a variant of the
Hadamard codes [22] from coding theory. The key property of this code is that
it yields short words such that every pair of strings in the code has the exactly
the same Hamming distance between them.

Hadamard Codes. We define two types of Hadamard codes using the Hadamard
matrices. The size 2 × 2 Hadamard matrix is defined to be:

H2 =
[
1 1
0 1

]

For n a power of 2 the size n×n Hadamard matrix Hn is recursively defined as:

Hn =
[
Hn

2
Hn

2

Hc
n
2

Hn
2

]

From the Hadamard matrices we define two codes. For n a power of 2 and γ
a multiple of n

2 , define the balanced Hadamard code HRB(n, γ) to be the set
of words obtained by taking each row of Hn concatenated 2γ

n times. Similarly,
define the Hadamard code HR(n, γ) by taking each row of Hn, removing the
last bit, and concatenating 2γ

n copies. The Hadamard and balanced Hadamard
codes have the following properties.

Lemma 1. Consider the codes HR(n, γ) and HRB(n, γ) for n and γ powers of
2 and 2γ ≥ n. The following properties hold.

1. For any S ∈ HR(n, γ), length(S) = 2γ − 2γ
n .

2. For any non-equal Si, Sj ∈HR(n, γ) (or any Si, Sj ∈HRB(n, γ)), H(Si, Sj) =
γ.

3. For any non-equal Si, Sj ∈ HR(n, γ), H(Si, S
c
j ) = γ − 2γ

n .
4. For any S ∈ HRB(n, γ), length(S) = 2γ.
5. Let FB(n, γ) = HRB(n, γ) \ {A1, . . . Ar} ∪ {Ac

1, . . . , A
c
r} for an arbitrary

subset {A1, . . . Ar} of HRB(n, γ). Then, properties 1 and 4 still hold for
FB(n, γ).

6. The codes HR(n, γ) and HRB(n, γ) can be computed in time O(n·γ).

3 Exact Labelings for Special Graphs

In constructing a γ-labeling for general graphs, we make use of a more restrictive
type of labeling called an exact labeling, as well as an inverted type of labeling.
Such labelings can be combined for a collection of graphs to obtain labelings for
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larger graphs. We consider two special types of graphs in this section, matchings
and star graphs, and show how to obtain short exact labelings for each. These
results are then applied in Section 4 by algorithms that decompose arbitrary
graphs into these special subgraphs efficiently, produce exact labelings for the
subgraphs, and then combine the labelings to get a labeling for the original
graph.

Definition 1 (Exact Labeling). A γ-labeling σ of a graph G = (V, E) is said
to be exact if there exist integers α and β, β−α ≥ γ, such that for any two nodes
u, v ∈ V it is the case that H(σ(u), σ(v)) = α if (u, v) ∈ E, and H(σ(u), σ(v)) = β
if (u, v) /∈ E. A labeling that only satisfies H(σ(u), σ(v)) = α if (u, v) ∈ E, but
H(σ(u), σ(v)) ≥ β if (u, v) /∈ E is called a lower exact labeling.

Definition 2 (Inverse Exact Labeling). A labeling σ of a graph G = (V, E)
is said to be an inverse exact labeling for value γ if there exist integers α and β,
β−α ≥ γ, such that for any two nodes u, v ∈ V it is the case that H(σ(u), σ(v)) =
α if (u, v) /∈ E, and H(σ(u), σ(v)) = β if (u, v) ∈ E.

Thus, the difference between an exact γ-labeling and a γ-labeling is that an
exact labeling requires the Hamming distance between adjacent vertices to be
exactly α, rather than at most α, and the distance between non-adjacent nodes
to be exactly β, rather than at least β. An inverse exact labeling is like an exact
labeling except that it yields a large Hamming distance between adjacent nodes,
rather than a small Hamming distance.

We are interested in exact γ-labelings because the exact γ-labelings for a
collection of graphs can be concatenated to obtain a γ-labeling for their union.
We define an edge decomposition of graph G = (V, E) into G1, . . . , Gr where
Gi = (Vi, Ei) such that Vi = V for all i and E =

⋃
i Ei.

Lemma 2. Consider a graph G with edge decomposition G1, . . . Gr. For each
Gi let σi be a labeling of Gi with length length(σi) = �i. Consider the labeling
σ(v) = σ1(v) · σ2(v) · · ·σr(v) defined by taking the concatenation of each of the
labelings σ for each vertex in G. Then the following hold.

1. If each σi is an exact γi-labeling of Gi with thresholds αi and βi, then for γ =
min{γi} the labeling σ(v) is a γ-labeling of G with thresholds α =

∑
βi − γ

and β =
∑

βi.
2. If each σi is an inverse exact γi-labeling of Gi with thresholds αi and βi, then

for γ = min{γi} the labeling σ(v) is a γ-labeling of the complement graph G
with thresholds α =

∑r
i=1 αi and β =

∑r
i=1 αi + γ.

We now discuss how to obtain exact and inverse exact labelings for special classes
of graphs. For the classes of graphs we consider, it is surprising that we are able to
achieve the same asymptotic label lengths for exact labelings as for inverse exact
labelings. In Section 4 we discuss algorithms that decompose general graphs into
these classes of graphs, obtain exact or inverse exact labelings, and then combine
them to obtain a γ-labeling from Lemma 2.
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3.1 Matchings

A graph G = (V, E) is said to be a matching if each connected component
contains at most two nodes. To obtain an exact labeling for a matching we use
Algorithm 1 MatchingExact. To obtain an exact inverse matching, there exists
an algorithm InverseMatchingExact (details omitted).

Algorithm 1. MatchingExact(G, γ)
1. Let γ′ = max(γ, n

2
). Generate HR(n, γ′).

2. Assign a distinct string from HR(n, γ′) to each clique of G. That is, apply the
labeling σ such that for each v ∈ V , σ(v) ∈ HR(n, γ′) and σ(v) = σ(u) iff (v, u) ∈
E.

3. Output σ.

Lemma 3. Algorithm 1 MatchingExact(G, γ) obtains an exact γ-labeling with
α = 0, β = max(γ, n

2 ), and length O(γ + n), in run time O(γn + n2).

Lemma 4. Algorithm InverseMatchingExact(G, γ) obtains an exact inverse la-
beling with α = max(γ, n

2 ), β = 2 ·max(γ, n
2 ), and length O(γ + n), in run time

O(γn + n2).

3.2 Star-Graphs

A graph is a star graph if there exists a vertex c such that all edges in the graph
are incident to c. For such a graph, let A be the set of all vertices that are not
adjacent to c and let B be the set of vertices that are adjacent to c. Algorithm 2
StarExact obtains an exact γ-labeling for a star graph G. (In fact, it achieves
an exact 2γ-labeling). Figure 1 provides an example of the labeling assigned
by StarExact. To obtain an exact inverse γ-labeling there exists an algorithm
InverseStarExact (details omitted).
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Fig. 1. (a) A star graph and (b) its corresponding exact labeling
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Algorithm 2. StarExact(G, γ)
1. Let γ′ = max(γ, n

2
). Let x = min(γ, n

2
). Arbitrarily index the n vertices of V as

v1, v2, . . ., vn with c = vn.
2. Set the first (n− 1)γ bits of σ(c) to be 0’s.
3. For each vertex vi �= c, set the first (n − 1)γ bits to be all 0’s except for the ith

size γ word which is set to all 1’s.
4. Append γ 1’s to σ(a) for each a ∈ A and γ 0’s to σ(b) and σ(c) for each b ∈ B.
5. For each vi ∈ A or vi = c append x copies of Sc

i to σ(vi) where Si is the ith string
in HR(γ′, n).

6. For each vi ∈ B append x copies of Si ∈ HR(γ′, n) to σ(vi).
7. Output σ.

Lemma 5. Algorithm 2 StarExact(G, γ) obtains an exact γ-labeling for a Star
graph G with α = γn

2 , β = 2γ + γn
2 and length O(γn), in run time O(γn2).

Lemma 6. Algorithm InverseStarExact(G,γ) obtains an exact inverseγ-labeling
for a Star graph G with α = γn

2 , β = 2γ + γn
2 and length O(γn), in run time

O(γn2).

4 Labeling General Graphs

To obtain a γ-labeling for a general graph, we decompose either the graph or
its complement into a collection of star and matching subgraphs. We then apply
Lemmas 3 and 5 or Lemmas 4 and 6 to obtain exact or exact inverse labelings for
these subgraphs, and then apply Lemma 2 to obtain a γ-labeling for the original
graph. We first consider an algorithm that decomposes a general graph G into
a collection of matchings.

4.1 Matching Decomposition

Lemma 7. An edge decomposition of a graph G = (V, E) into maximal match-
ings contains Θ(D) graphs where D is the maximum degree of any vertex in
G.

By breaking a given graph G into Θ(D) matchings and applying Lemmas 2 and 3,
we have the algorithm MatchingDecomposition(G, γ) which yields a γ-labeling
σ of G with length(σ) = O(D·(γ + n)). For dense graphs whose vertices are all
of high degree, MatchingDecomposition(G, γ) can be modified to decompose the
complement graph G into maximal matchings and apply the routine Inverse-
MatchingExact to obtain a length bound of O(D · (γ + n)) where D is the
maximum degree of any vertex in G. We thus get the following result.

Theorem 3. For any graph G and γ, there exists a γ-labeling σ of G with
length(σ) = O(D̂γ+D̂n) that can be computed in time complexity O(γD̂n+D̂n2)
where D̂ is the smaller between the degree of the maximum degree vertex in G
and the maximum degree vertex in G.
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4.2 Hybrid Decomposition (Star Destroyer)

The next algorithm for obtaining a γ-labeling adds the star decomposition to
the basic matching algorithm. From Theorem 3, the matching algorithm may
perform poorly even if there are just a few very high and very low degree vertices
in the graph. The StarDestroyer(G, γ) algorithm thus repeatedly applies the star
decomposition until all nodes have degree at most

√
mγn/

√
γ + n , and then

applies a final matching decomposition. With a few additional modifications we
achieve the following.

Theorem 4. For any graph G and γ, Algorithm StarDestroyer(G, γ) yields
a γ-labeling σ of G with length(σ) = O(

√
γ2m̂n + γm̂n2) in time complexity

O(
√

γ2m̂n3 + γm̂n4) where m̂ = min{|E|, |Ē|}.

5 Trees and Forests

In this section we consider input graphs that are trees or forests and show that
we are able to obtain substantially smaller labelings than what is possible for
general graphs. For a collection of trees with a special type of γ-labeling, we show
how to combine the collection into a single special γ-labeled tree. Thus, using
recursive separators for trees we provide a recursive algorithm for tree labeling
that achieves a length of O(γD log n) where D is the largest degree node in the
tree.

We then show how to improve this bound with a more sophisticated algorithm
that assigns labels efficiently to paths as a base case, and recurses on the number
of leaves in the tree rather than the number of nodes to achieve a length of
O(γD log(max{f, n

γD})) where f is the number of leaves in the tree. Note that
this second bound is always at least as good as the first, and for trees with few
leaves but high γ, is better. For example, consider the class of graphs consisting
of log n′ length n′

log n′ paths, each connected on one end to a single node v. The
number of nodes in this graph is n = n′ + 1, the highest degree node has degree
D = log n′, and the number of leaves is f = log n′. For γ = n

log n′ , the first bound
yields � = O(n log n) while the second yields � = O(n log log n).

5.1 Combining Trees

To make our recursive algorithms work, we need a way to take labelings from
different trees and efficiently create a labeling for the tree resulting from com-
bining the smaller trees into one. To do this, we will make use of a special type
of γ-labeling.

Definition 3 (Lower Bounded Labeling). A γ-labeling σ is said to be a
lower bounded γ-labeling with respect to αa, αb, and β, αa ≤ αb < β, β−αb ≥ γ
if for any two nodes v and u, αa ≤ H(σ(v), σ(u)) ≤ αb if v and u are adjacent,
and H(σ(v), σ(u)) ≥ β if they are not adjacent.
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Given a collection of lower bounded labelings for trees, we can combine the
labelings into a new lower bounded labeling with the same parameters according
to Lemma 8. For the rest of this section, we will be dealing with a parameter D′

which will be an upper bound on the maximum degree value of the input graph
such that D′ + 1 is a power of 2 greater than 2.

Algorithm 3. CombineTrees(T = (V, E), v, {σi}t
i=1)

Input:

1. A degree t vertex v in tree T with t ≤ D′.
2. An αa = γ, αb = γ(D′−1)

2
, β = γ(D′+1)

2
lower bounded γ-labeling σi for each

subtree of v.

Output: An αa = γ, αb = γ(D′−1)
2

, β = γ(D′+1)
2

lower bounded γ-labeling of T .

1. For each labeling σi, append 0’s such that length(σi) = maxi=1...t{length(σi)}.
2. For each of the child trees T1, . . . Tt of v, do

(a) Let vi be the vertex in Ti adjacent to v and let vi,j denote the value of the jth

character of σi(vi). For each u ∈ Ti, u �= vi, invert the jth character of σi(u) if
vi,j = 1.

(b) Set σi(vi) to all 0’s.
3. Let σ(v) be maxi=1...t{length(σi)} 0’s concatenated with Sc

t+1 ∈ HR(D′ +

1, γ(D′+1)
2

). Let σ(u) = σi(u) for each u ∈ Ti.
4. For i = 1 to t

(a) For each u ∈ Ti, σ(u)← σ(u) · Si for Si ∈ HR(D′ + 1, γ(D′+1)
2

).
5. Output σ.

Lemma 8 (Combining Trees). Consider a vertex v in a tree T of degree t.
Suppose for each of the t subtrees of v we have a corresponding length at most
� lower bounded γ-labeling σi with β = γ(D′+1)

2 , αb = β − γ, and αa = γ
for some D′ ≥ max{t, 2}, D′ + 1 a power of 2. Then, Algorithm 3 Combine-
Trees(T, v, {σi}t

i=1) computes a lower bounded γ-labeling with the same αa, αb,
and β values and length �′ ≤ � + γD′.

5.2 Node Based Recursion

Define a node separator for a graph to be a node such that its removal leaves the
largest sized connected component with at most �n

2 	 vertices. Given Lemma 8
and the well known fact that every tree has a node separator, we are able to
label a tree by first finding a separator, then recursively labeling the separated
subtrees using lower bounded labeling parameters αa = γ, αb = γ(D′−1)

2 , and
β = γ(D′+1)

2 for D′ = O(D). Since it is trivial to obtain a lower bounded labeling
satisfying such αa, αb, and β for a constant sized base case tree, we can obtain
a O(γD log n) bound on length of labelings for trees.

We can then extend this to a t tree forest by creating t length γ(D′+1)
2 log t

length strings such that each pair of strings has Hamming distance at least
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γ(D′+1)
2 and appending a distinct string to the nodes of each forest. This yields

the following result.

Theorem 5 (Node Recursive Forest). Given an integer γ and a forest F
with maximum degree D, a γ-labeling of F with length O(γD log n) can be con-
structed in time O(nγD log2 n).

5.3 Leaf Based Recursion

Instead of performing recursion by halving the number of nodes in the graph,
we can instead halve the number of leaves in the graph and use an efficient path
labeling algorithm to solve the base case. We first describe the efficient path
labeling scheme.

Path Labeling. As a base case for our recursive algorithm, according to
Lemma 8, we want to be able to produce a short lower bounded γ-labeling for a
path graph with β = γ(D′+1)

2 , αb = γ(D′−1)
2 , and αa ≥ γ for any given D′. When

called from the tree algorithm, D′ will be on the order of the maximum degree
of any node in the input tree. The Path algorithm will achieve αa = β

2 ≥ γ to
satisfy the desired constraints. The reason for this choice of αa is that it is a
power of 2, which is necessary for our algorithm. The basic structure of the Path
algorithm is that it uses recursion based on node separators and Lemma 8 until
the path is sufficiently short. Then, a labeling based on the Hadamard code is
used. Recursive Algorithm 4 Path achieves the following result.

Algorithm 4. Path(P = 〈v1, . . . vn〉, γ, D′)
1. If n ≤ 2γ(D′ + 1)− 1 then

(a) Compute S1, . . . Sγ(D′+1) ∈ HR(γ(D′ + 1), γ(D′+1)
4

).
(b) For i = 1 to γ(D′ + 1)− 1 do

i. σ(v2i−1)← Si.Si

ii. σ(v2i)← Si.Si+1

(c) σ(v2γ(D′+1)−1)← Sγ(D′+1).Sγ(D′+1)

(d) Output σ.
2. Else

(a) Let P1 = 〈v1, . . . , v n
2 −1〉, P2 = 〈v n

2 +1 . . . , vn〉.
(b) σ1 ←Path(P1, γ, D′), σ2 ←Path(P2, γ, D′).
(c) Output CombineTrees(P, v n

2
, {σ1, σ2}).

Lemma 9. For D′≥3, D′+1 a power of 2, and path P , Algorithm 4 Path(P,γ,D′)
generates a lower bounded γ-labeling σ of P with αa = γ(D′+1)

4 , αb = γ(D′−1)
2 ,

β = γ(D′+1)
2 , and length(σ) = O(max{γD′ log( n

γD′ ), γD′}) in time O(n·(max{γ
D′ log2( n

γD′ ), γD′})).

Leaf Recursive Tree Algorithm. The leaf recursive tree algorithm recursively
reduces the number of leaves in the tree until the input is a simple path, for which
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Algorithm Path can be used. For a tree T with f leaves, a leaf separator is a
node such that its removal reduces the largest number of leaves in any of the
remaining connected components to at most � f

2 +1. We start by observing that
every tree must have a leaf separator.

Lemma 10. Every tree has a leaf separator.

Note that a leaf separator always reduces the number of leaves in a tree unless
there are only 2 leaves, in which case the tree is a path which can be handled
according to Lemma 9. Having removed a leaf separator and recursively solved
for the sub trees, we can then apply Lemma 8 to finish the labeling. The details of
the algorithm are given as follows. Here, the input parameter D′ is the smallest
integer such that D′ + 1 is a power of 2 and D′ is at least the degree of the
highest degree node in the tree, or 3 in the case of an input path.

Algorithm 5. Tree(T = (V, E), γ, D′)
1. If Deg(T ) ≤ 2, then output Path(T, γ, D′).
2. Else

(a) Find a leaf separator v for T .
(b) For each of the child trees T1, . . . Tt of v, σi ←Tree(Ti, γ, D′).
(c) Output CombineTrees(T, v, {σi}ti=1).

Theorem 6 (Trees). Consider a tree T with f leaves and integer D′ = 2j −
1 ≥ max{deg(T ), 3}. Then, Algorithm 5 Tree(T, γ, D′) computes a length O(γD′

log(max{f, n
γD′ })) γ-labeling of T in time complexity O(n·(γD′ log2(max{f, n

γD′ })).

To extend this result to a forest of trees T1 · · ·Tt, we can use Tree(Ti, γ, D′)
for each individual tree. We can then append a distinct string from a set of t
strings to each tree such that the distance between any two strings is at least
β = γ(D′+1)

2 . Deterministically we can achieve such a set of strings trivially
using additional length O(γD log t) where D = deg(T ). Alternately, we can use
elements of HR(t, β) for an additional length of O(t + γD). These approaches
yield the the following theorem.

Theorem 7 (Leaf Recursive Forest). There exists a deterministic algorithm
that produces a length O(min{t, γD log t} + γD log(max{f, n

γD})) γ-labeling for
an input forest F in time complexity O(n·(min{t, γDlog t}γDlog2(max{f, n

γD}))),
where D = deg(F ), f is the largest number of leaves in any of the trees in F ,
and t is the number of trees in F .

Alternately, we can use randomization to append shorter strings to each tree and
avoid an increase in complexity. Kao et al.[15] showed that with high probability,
a set of n uniformly generated random binary strings has Hamming distance at
least x between any two words with high probability for words of length at least
10(x + log n). Thus, we can produce a γ-labeling for a forest by first finding a
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labeling for each tree, making the length of the labels equal, and finally picking
a random string of length 10(β + log n) for each tree and appending the string
to each of the nodes in the tree. We thus get the following result.

Theorem 8 (Randomized Forest). There exists a randomized algorithm that
produces a length O(γD log(max{f, n

γD})) γ-labeling for an input forest F with
probability at least 1 − 1

n+2γ , in time complexity O(n·(γD log(max{f, n
γD}))),

where D = deg(F ), and f is the largest number of leaves in any of the trees in
F .

6 Future Directions

There are a number of potential research directions stemming from this work. A
few of these are as follows. First, can our technique for labeling general graphs
by decomposing the graph into exact labelings be extended? We considered two
different types of decompositions, stars and matchings. Are there other types
of decompositions that can yield better bounds? Second, our lower bounds are
straightforward and stem primarily from lower bounds for labeling for adjacency
in general, rather than our much more restricted problem. It is likely that much
higher bounds exist for flexible word design. Third, an important class of graphs
that permits short labels for general graph labeling is the class of planar graphs.
It would be interesting to know whether or not a flexible word labeling that is
sublinear in the number of vertices exists as well. Fourth, we have initiated the
use of randomization in designing labels. Randomization is used extensively in
the design of standard DNA code word sets, and it would be interesting to know
if more sophisticated randomized algorithms can be applied to achieve better
flexible word labelings. Finally, although not included in this draft, we have also
considered generalizations of flexible word design to both distance labelings and
weighted graphs. These generalizations present many open problems and may
have direct applications to applying DNA computing to digital signal processing.
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