
Universal Shape Replication Via Self-Assembly1

With Signal-Passing Tiles2

Andrew Alseth #3

University of Arkansas, USA4

Daniel Hader #5

University of Arkansas, USA6

Matthew J. Patitz #7

University of Arkansas, USA8

Abstract9

In this paper, we investigate shape-assembling power of a tile-based model of self-assembly called the10

Signal-Passing Tile Assembly Model (STAM). In this model, the glues that bind tiles together can11

be turned on and off by the binding actions of other glues via “signals”. Specifically, the problem we12

investigate is “shape replication” wherein, given a set of input assemblies of arbitrary shape, a system13

must construct an arbitrary number of assemblies with the same shapes and, with the exception14

of size-bounded junk assemblies that result from the process, no others. We provide the first fully15

universal shape replication result, namely a single tile set capable of performing shape replication on16

arbitrary sets of any 3-dimensional shapes without requiring any scaling or pre-encoded information17

in the input assemblies. Our result requires the input assemblies to be composed of signal-passing18

tiles whose glues can be deactivated to allow deconstruction of those assemblies, which we also19

prove is necessary by showing that there are shapes whose geometry cannot be replicated without20

deconstruction. Additionally, we modularize our construction to create systems capable of creating21

binary encodings of arbitrary shapes, and building arbitrary shapes from their encodings. Because22

the STAM is capable of universal computation, this then allows for arbitrary programs to be run23

within an STAM system, using the shape encodings as input, so that any computable transformation24

can be performed on the shapes.25

2012 ACM Subject Classification Theory of computation → Models of computation26

Keywords and phrases Algorithmic self-assembly, Tile Assembly Model, shape replication27

Digital Object Identifier 10.4230/LIPIcs.DNA.2022.28

Funding Andrew Alseth: This author’s work was supported in part by NSF grant CAREER-155316629

Daniel Hader : This author’s work was supported in part by NSF grant CAREER-155316630

Matthew J. Patitz: This author’s work was supported in part by NSF grant CAREER-155316631

© Andrew Alseth, Daniel Hader, and Matthew J. Patitz;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on DNA Computing and Molecular Programming.
Editors: John Q. Open and Joan R. Access; Article No. ; pp. :1–:61

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:awalseth@uark.edu
https://orcid.org/0000-0002-0055-0788
mailto:dhader@uark.edu
mailto:patitz@uark.edu
https://orcid.org/0000-0001-9287-4028
https://doi.org/10.4230/LIPIcs.DNA.2022.
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


A. Alseth, D. Hader, and M. J. Patitz XX:1

1 Introduction32

Artificial self-assembling systems are most often designed with the goal of building structures33

“from scratch”. That is, they are designed so that they will start from a disorganized set34

of relatively simple components (often abstractly called tiles) that autonomously combine35

to form more complex target structures. This process often begins from collections of only36

unbound, singleton tiles, or sometimes also includes so-called seed assemblies which may be37

small (in relation to the target structure) “pre-built” assemblies that encode some information38

which seeds the growth of larger assemblies. This growth occurs as additional tiles bind to39

those seed assemblies according to the rules of the system, allowing them to eventually grow40

into the desired structures. Examples have been shown in both experimental settings (e.g.41

[11, 32, 16]), as well as in the mathematical domains of abstract models (e.g. [29, 27, 6, 10, 8]).42

However, in the subdomain of algorithmic self-assembly, in which systems are designed so43

that the tile additions implicitly follow the steps of pre-designed algorithms, other goals44

have also been pursued. These have included, for instance, performing computations (e.g.45

[18, 25]), identifying input assemblies that match target shapes [26], replicating patterns on46

input assemblies [17, 28], and replicating (the shapes of) input assemblies [5, 20, 1, 3, 13].47

In this paper, we explore the latter, particularly the theoretical limits of systems within a48

mathematical model of self-assembling tiles to replicate shapes.49

We use the term shape replication to refer to the goal of designing self-assembling systems50

that take as input seed assemblies and which produce new assemblies that have the same51

shapes as those seed assemblies [1]. In order for tile-based self-assembling systems to perform52

shape replication, dynamics beyond those of the original abstract Tile Assembly Model53

(aTAM), introduced by Winfree [31] and widely studied (e.g. [29, 27, 10, 18, 4, 22, 14, 19]),54

are required. In the aTAM, tiles attach to the seed assembly and the assemblies which grow55

from it, one tile at a tile, and tile attachments are irreversible. A generalization of the aTAM,56

the hierarchical assembly model known as the 2-Handed Assembly Model [4, 6], allows for57

the combination of pairs of arbitrarily large assemblies, but it too only allows irreversible58

attachments. However, for shape replication, it is fundamentally important that at least some59

tiles are able to bind to the input assemblies to gather information about their shapes which60

is then used to direct the formation of the output assemblies, since binding to an assembly is61

the only mechanism for interacting with it. These output assemblies eventually must not62

be connected to the input assemblies if they are to have the same shapes as the original63

input assemblies. This requires that at some point tile bindings can be broken. A number64

of theoretical models have been proposed with mechanisms for breaking tiles apart, for65

example: glues with repulsive forces [24, 21], subsets of tiles which can be dissolved at given66

stages of assembly [1, 9], tiles which can turn glues on and off [23, 15] (a.k.a. signal-passing67

tiles), and systems where the temperature can be increased to cause bonds to break [6, 30].68

Within these models, previous results have shown the power of algorithmic self-assembling69

systems to perform shape replication. In [5], they used glues with repulsive forces, and in70

[1] they used the ability to dissolve away certain types of tiles at given stages during the71

self-assembly process, and each showed how to replicate a large class on two-dimensional72

shapes. In [13], signal-passing tiles were shown to be capable of replicating arbitrary hole-free73

two-dimensional shapes if they are scaled up by a factor of 2. The results of [3] deal with the74

replication of three-dimensional shapes, and will be further discussed below.75

The results of this paper are the first which provide for shape replication of all 3-76

dimensional shapes with no requirement for scaling those shapes. Additionally, although77

in [3] all three-dimensional shapes can be replicated at the small scale factor of 2, there78

DNA28



XX:2 Universal Shape Replication Via Self-Assembly With Signal-Passing Tiles

Figure 1 Schematic depiction of shape replication: (Left) An input assembly, (Middle) The
assembly resulting from the encoding process which deconstructs the input assembly and encodes its
shape, (Right) The assembly created by the decoding process, which uses the encoding as its input.

it is necessary for the input assemblies to have relatively complex information embedded79

within them (in the form of Hamiltonian paths through all of their points being encoded80

by their glues). In our results, the input assemblies require no such embedded information.81

Furthermore, the model used in [3] is more complex, allowing not only for hierarchical82

assembly and signal-passing tiles, but also for tiles of differing shapes, and glue bindings that83

are flexible and thus allow for assemblies to reconfigure by folding. For the results of this84

paper, we have not only limited the dynamics to those of the Signal-Passing Tile Assembly85

Model (STAM), but have even placed an additional restriction on the model. Rather than86

assigning fixed orientations to tiles, in the model we use and call the STAMR (i.e. the87

“STAM with rotation”) tiles and assemblies are allowed to rotate. This allows us to consider88

an even more general, and difficult, version of the shape replication problem. Namely, the89

input assemblies in our constructions have glues of a single generic type covering their entire90

exteriors, and there is no distinction between a north-facing glue and an east-facing glue, for91

instance, as there is in the standard STAM. This makes several aspects of working with such92

generic input assemblies more difficult, but it is notable that our constructions need only93

trivial, simplifying modifications to work in the standard STAM and that our positive results94

thus also hold for the STAM. We show that there is a “universal shape replicator” which is a95

tileset in the STAMR that can be used in conjunction with any set of generic input assemblies96

and will cause assemblies of every shape in the input set to be simultaneously produced97

in parallel. This is the first truly universal shape replicator for two or three dimensional98

shapes1. Furthermore, we break our construction into two major components, a “universal99

encoder” and a “universal decoder” (see Figure 1 for a depiction). The universal encoder100

is capable of taking generic input assemblies and creating assemblies that expose binary101

sequences that encode those shapes, and the universal decoder is capable of taking assemblies102

exposing those encodings and creating assemblies of the encoded shapes. Due to the Turing103

universality of this model, this also allows for the full range of all possible computational104

transformations to occur between the encoding and decoding, and thus enables the generation105

of any transformations of the shapes of the input assemblies, such as creating scaled versions106

or complementary shapes.107

In order for our universal shape replication construction to operate, the input assemblies108

must be created from signal-passing tiles which are capable of turning off their glues and109

dissociating from the assemblies. This allows for the assemblies to be “deconstructed”, and110

we prove that this is necessary in order to replicate arbitrary shapes, specifically those which111

have enclosed or narrow, curved cavities, and this is intuitively clear since otherwise there112

would be no way to determine which locations in the interior of an input shape are included113

1 Note that while replicating two-dimensional shapes, which consist of points in a single plane, our
construction will utilize three dimensions.



A. Alseth, D. Hader, and M. J. Patitz XX:3

in the shape, and which are part of an enclosed void. Our proof that it is also impossible114

to replicate shapes with curved, but not enclosed, cavities further exhibits the additional115

difficulty of working within the STAMR model which allows tile rotations.116

While our universal shape encoder, decoder, and replicator achieve the full goal of the117

line of research into shape replication, and also provide the ability to augment shape-building118

with arbitrary computational transformations, we note that the results are highly theoretical119

and serve more generally as an exploration of the theoretical limits of self-assembling systems.120

The tilesets are relatively large and require tiles with large numbers of signals, and although121

the input assemblies are not required to have complex information embedded within them,122

a trade-off that occurs compared with the results of [3] is that our constructions make use123

of a large amount of “fuel”. That is, a large number of tiles are used during various phases124

but they are only temporary and aren’t contained within the target assemblies and thus125

are “consumed” by the construction process. Despite the complexity of these theoretical126

constructions, we think that several modules and techniques developed may be of future127

use within other constructions (e.g. our “leader election” procedure which is guaranteed to128

uniquely select a single corner of an input assembly’s bounding prism, to serve as a staring129

location for our encoding procedure within a constant number of assembly steps despite the130

lack of directional information provided by such an assembly), and also that these results131

may lead the way to similarly powerful but less complex constructions that may eventually132

achieve a level of being physically plausible to construct.133

This paper is organized as follows. In Section 2 we provide definitions of the STAMR and134

other terminology used throughout the paper, plus a series of subconstructions that appear135

throughout the main constructions. In Section 3 we state our main theorem and supporting136

lemmas, and present the constructions that prove them. In Section 4 we show that the137

constructions can be easily adapted to also work in the standard STAM. In Section 5 we138

briefly describe some of the computational transformations that could be used to augment139

our constructions, and in Section 6 we prove deconstruction is necessary for shape replication140

of certain classes of shapes.141

2 Definitions142

In this section we provide definitions of the model used, and also for several of the terms and143

subconstructions used throughout the paper.144

2.1 Definition of the STAMR model145

Here we provide a definition of the model used in this paper, called the STAMR (i.e. the146

“STAM with rotation”), which is based upon the 3D Signal-passing Tile Assembly Model147

(STAM) [12]. The STAM is itself based upon the 2-Handed Assembly Model (2HAM) [6, 7],148

also referred to as the “Hierarchical Assembly Model”, which is a mathematical model of149

tile-based self-assembling systems in which arbitrarily large pairs of assemblies can combine150

to form new assemblies.151

A glue is an ordered pair (l, s), where l ∈ Σ+ ∪ {s∗ : s ∈ Σ+} is a non-empty string, called152

the label, over some alphabet Σ, possibly concatenated with the symbol ‘∗’, and s ∈ Z+ is a153

positive integer, called the strength. A glue label l is said to be complementary to the glue154

label l∗.155

A tile type is a mapping of zero or more glues, along with glue states and possibly signals,156

which will be defined shortly, to the 6 faces of a unit cube. A tile is an instance of a tile157

type, and is the base component of the STAMR. Each tile type is defined in a canonical158

DNA28



XX:4 Universal Shape Replication Via Self-Assembly With Signal-Passing Tiles

orientation, but tiles can be in that orientation or any rotation which is orthogonal to it (i.e.159

they are embedded in Z3).160

Every glue can be in one of three glue states: {on, latent, off}. If two tiles are placed161

next to each other, and their adjacent faces have glues g1 = (l, s) and g2 = (l∗, s), then those162

glues can form a bond whose strength is s. We require any copies of glues with the label l, or163

its complement l∗, in any given system have the same strength (e.g. it is not allowed to have164

one glue labeled l with strength 1 and another labeled l or l∗ with strength 2).165

A signal is a mapping from a glue gs (the source glue) to an ordered pair, (gt, s), where166

gt (the target glue) is a glue on the same tile as gs (possibly gs itself) and s ∈ {on, off}. If167

and when gs forms a bond with its complementary glue on an adjacent tile, the signal is168

fired to change the state of gt to state s. Each glue of a tile type can be defined to have zero169

or more signals assigned to it. Each signal on a tile can fire at most a single time. When a170

glue is fired, the state of the target glue is not immediately changed, but the pair (gt, s) is171

added to a queue of pending signals for the tile containing its glues. When a pending glue172

is selected for completion (in a process described below), then the state of gt is changed to173

s if and only if its current state is s0 and (s0, s) ∈ {(on, off), (latent, on), (latent, off)}.174

That is, the only valid glue state transitions are on to off, or latent to on or off.175

A supertile is (the set of all translations and rotations of) a positioning of one or more176

connected tiles on the integer lattice Z3. Two adjacent tiles in a supertile can form a bond177

if the glues on their abutting sides are complementary and both are in the on state. Each178

supertile induces a binding graph, a grid graph whose vertices are tiles, with an edge between179

every pair of bound tiles whose weight is the strength of the bound glues. A supertile is180

τ -stable if every cut of its binding graph cuts edges whose weights sum to at least τ . That181

is, the supertile is τ -stable if at least energy τ is required to separate the supertile into two182

parts. Assembly is another term for a supertile, and we use the terms interchangeably, to183

mean the same thing.184

Each tile has a tile state that contains the current state of every glue as well as a (possibly185

empty) set of pending signals and a (possibly empty) set of completed signals. Every supertile186

consists of not only its set of constituent tiles, but also their tile states, and a set bonds that187

have formed between pairs of glues on adjacent tiles.188

A system in the STAMR is an ordered triple (T, S, τ) where T is a finite set of tiles called189

the tileset, S is a system state which consists of a multiset of supertiles that each have a count190

(possibly infinite), and τ ∈ Z+ is the binding threshold (a.k.a. temperature) parameter of the191

system which specifies the minimum strength of bonds needs to hold a supertile together. In192

the initial state of a system, no tiles have pending signals, all pairs of adjacent glues which193

are both complementary and in the on state in all supertiles have formed bonds and any194

signals which would have been fired by those bonds are completed, and all distinct supertiles195

are assumed to start arbitrarily far from each other (i.e. none is enclosed within another).196

By default (and unless otherwise specified), the initial state contains an infinite count of all197

singleton tiles in T .198

A system evolves as a (possibly infinite) series of discrete steps, called an assembly199

sequence, beginning from its initial state. Each step occurs by the random selection and200

execution of one of the following actions:201

1. Two supertiles currently in the system, α and β, are translated and/or rotated without202

ever overlapping so that they can form bonds whose strengths sum to at least τ . The203

count of the newly formed supertile is increased by 1 in the system state and the counts of204

each of α and β are decreased by 1 (if they aren’t ∞). In the newly created supertile, from205

the entire set of pairs of glues which can form bonds, a random subset whose strengths206



A. Alseth, D. Hader, and M. J. Patitz XX:5

sum to ≥ τ is selected and bonds formed by those glues are added to the set of bonds207

that have formed for that supertile. Additionally, for each glue which forms a bond, all208

signals for which it is a source glue, but which aren’t already pending or completed, are209

added to the set of pending signals for its tile.210

2. For any supertile currently in the system, from the set of pairs of glues which can form211

bonds but haven’t, a glue pair is selected and a bond formed by those glues is added to212

the set of bonds that have formed for that supertile. Additionally, for each glue which213

forms that bond, all signals for which it is a source glue, but which aren’t already pending214

or completed, are added to the set of pending signals for its tile.215

3. For any supertile currently in the system, a pending signal is selected from the set of216

pending signals of one of its tiles. If the action specified by that signal is valid, the state217

of the target glue is changed to the state specified by the signal. The signal is removed218

from the set of pending signals and added to the set of completed signals. If the action is219

not valid (i.e. the pair specifying the current state of the target glue and the desired end220

state is not in {(on, off), (latent, on), (latent, off)}), then the signal is just removed221

from the pending set and added to the completed set, and there is no change to the target222

glue.223

4. For a supertile γ currently in the system for which there exists one or more cuts of < τ224

(which could be the case due to one or more glues changing to the off state), one of225

those cuts is randomly selected and γ is split into two supertiles, α and β, along that cut.226

The count of γ in the system state is decreased by one (if it isn’t ∞) and the counts of α227

and β are increased by one (if they aren’t ∞).228

Given a system T = (T, S, τ), a supertile is producible, written as α ∈ A[T ], if it either is229

contained in the initial state S or it can be formed, starting from S, by any series of the230

above steps. A supertile is terminal, written as α ∈ A□[T ], if it is producible and none of231

the above actions are possible to perform with it (and any other producible assembly, for list232

item 1).233

Note that tiles are not allowed to diffuse through each other, and therefore a pair of234

combining supertiles must be able to translate and/or rotate without ever overlapping into235

positions for binding. It is allowed, though, for two supertiles, α and β, to translate and/or236

rotate into locations which are partially enclosed by another supertile γ before binding,237

potentially creating a new supertile, δ, which would not have been able to translate and/or238

rotate into that location inside γ, without overlapping γ, after forming. However, although239

the model allows for supertiles to assemble “inside” of others, in order to strengthen our240

results we do not utilize it for the constructions of our positive results, but its possibility241

does not impact our negative result.242

▶ Definition 1. Given an STAMR system T = (T, S, τ), we say that it finitely completes243

with respect to a set of terminal assemblies α̂ if and only if there exists some constant c ∈ N244

such that, if in the initial configuration S, each element of S was assigned count c, in every245

possible valid assembly sequence of T , every element of α̂ is produced.246

A system which finitely completes with respect to assemblies α̂ is guaranteed to always247

produce those assemblies as long as it begins with enough copies of the (super)tiles in its248

initial configuration, i.e. it cannot follow any assembly sequence which would consume one249

or more (super)tiles needed to form those assemblies before making them.250

▶ Definition 2. A shape is a non-empty connected subset of Z3, i.e. a connected set of unit251

cubes each of which is centered at a coordinate v⃗ ∈ Z3. A finite shape is a finite connected252

subset of Z3.253

DNA28



XX:6 Universal Shape Replication Via Self-Assembly With Signal-Passing Tiles

Figure 2 Example of a bent cavity, assuming that the planes on the sides into and out of the
page were also filled in, leaving a single-cube-wide path into the interior of the shape.

In this paper, we consider shapes to be equivalent up to rotation and translation and254

unless stated otherwise explicitly, we will use the word shape to refer only to finite shapes.255

▶ Definition 3. Given a shape s, a bounding box is a rectangular prism in Z3 which256

completely contains s. The minimum bounding box is the smallest such rectangular prism.257

▶ Definition 4. Given a shape s, we use the term enclosed cavity in s to refer to a set of258

connected points in Z3 that are not contained in s and for which no path in Z3 exists that259

does not intersect at least one point in s and gets infinitely far from all points in s.260

▶ Definition 5. Given a shape s, we use the term bent cavity in s to refer to a set of261

connected points in Z3 contained inside of the minimum bounding box of s, bs, but not262

contained within s itself, such that it includes some points which can be reached by straight263

lines in Z3 beginning from points in bs, and some points which cannot be reached by straight264

lines in Z3 beginning from points in bs.265

See Figure 2 for an example of a bent cavity.266

▶ Definition 6. We define a shape encoding function fe as a function which, given as input267

an arbitrary shape s, returns a unique finite set E of binary strings, each unique for the268

shape s, such that there exists a shape decoding function, fd and fd(e) = s for all e ∈ E.269

The shape encoding function we will define by construction in the proof of Lemma 14270

will generate a set of binary strings for each input shape s such that each string encodes the271

points of the shape starting from a different reference corner and rotation of a bounding box.272

That can lead to up to 24 unique binary strings (for 3 rotations of each of 8 corners) for273

most shapes, but less for those with symmetry.274

▶ Definition 7. Given a shape S and a point p = (x, y, z) ∈ S, we define the neighborhood of p275

in S to be the set S∩{(x+1, y, z), (x−1, y, z), (x, y+1, z), (x, y−1, z), (x, y, z+1), (x, y, z−1)}.276

We also say that neighborhoods are equivalent up to rotation, so there is 1 neighborhood277

containing 1 point, 2 with 2 points, 2 with 3 points, 2 with 4 points, 1 with 5 points, and 1278

with 6 points.279

▶ Definition 8. We define a uniformly covered assembly as an assembly α where every280

exposed side of every tile has the same strength 1 glue which is on. Additionally, if s is the281

shape of α, we require that for every 2 points p, q ∈ s with the same neighborhood, a tile of282

the same type is located in both locations p and q in α.283

A uniformly covered assembly has the same glue all over its surface, with no glues284

marking special or unique locations, and has the same tile type in each location with the285

same neighborhood, so such an assembly can convey no information specific to particular286

locations, orientation, etc.287



A. Alseth, D. Hader, and M. J. Patitz XX:7

▶ Definition 9. We define a deconstructable assembly as an assembly where (1) all neigh-288

boring tiles are bound to each other by one or more glues whose strengths sum to ≥ τ , and289

(2) each tile contains the glue(s) and signal(s) necessary to allow for all glues binding it to290

its neighbors to be turned off.291

In the following definitions, we will use the term junk assembly to refer to an assembly292

that is not a “desired product” of a system, but which is a small assembly composed of tiles293

which were used to facilitate the construction but are now terminal and cannot interact any294

further.295

▶ Definition 10 (Universal shape encoder). Let S be the set of all finite shapes, let fe be a296

shape encoding function, let c ∈ N be a constant, and let E be a tileset in the STAMR. If, for297

every finite subset of shapes S′ ⊂ S, there exists an STAMR system ES′ = (E, σS′ , τ), where298

σS′ consists of infinite copies of assemblies of each shape s ∈ S′ and also infinite copies of299

the singleton tiles from E, such that (1) for every shape s ∈ S′ there exists at least one binary300

string bs ∈ fe(s) and there exist infinite terminal assemblies of ES′ that contain glues in the301

on state on the exterior surfaces of those assemblies that encode bs (which we refer to as302

an assembly encoding s), (2) every terminal assembly is either an assembly encoding some303

s ∈ S′ or a “junk assembly” whose size is bounded by c, and (3) no non-terminal assembly304

grows without bound, then we say that E is a universal shape encoder with respect to fe.305

▶ Definition 11 (Universal shape decoder). Let S be the set of all finite shapes, let fe be a306

shape encoding function, let c ∈ N be a constant, and let D be a tileset in the STAMR. If, for307

every finite subset of shapes S′ ⊂ S, there exists an STAMR system DS′ = (D, σS′ , τ), where308

σS′ consists of infinite copies of assemblies each of which encode a shape s ∈ S′ with respect309

to fe, and also infinite copies of the singleton tiles from D, such that (1) for every shape310

s ∈ S′ there exist infinite terminal assemblies of shape s, (2) every terminal assembly is311

either an assembly of the shape of some s ∈ S′ or a “junk assembly” whose size is bounded by312

c, and (3) no non-terminal assembly grows without bound, then we say that D is a universal313

shape decoder with respect to fe.314

▶ Definition 12 (Universal shape replicator). Let S be the set of all finite shapes and let R315

be a tileset in the STAMR, and let c ∈ N be a constant. If, for every finite subset of shapes316

S′ ⊂ S, there exists an STAMR system RS′ = (R, σS′ , τ), where σS′ consists of infinite317

copies of assemblies of each shape s ∈ S′ and also infinite copies of the singleton tiles from318

R, such that (1) for every shape s ∈ S′ there exist infinite terminal assemblies of shape s,319

(2) every terminal assembly is either an assembly of the shape of some s ∈ S′ or a “junk320

assembly” whose size is bounded by c, (3) the number of assemblies of each shape s ∈ S′
321

grows infinitely, and (4) no non-terminal assembly grows without bound, then we say that R322

is a universal shape replicator.323

2.2 STAMR Gadgets and Tools324

Throughout our results we repeatedly make use of several small assemblies of tiles, referred325

to as gadgets, and patterns of signal activations to accomplish tasks such as keeping track of326

state, removing specific tiles, and passing information across an assembly. In this section we327

describe several of these gadgets and signal patterns so that they can later be referenced328

during our construction. We intend that this section also serve as a basic introduction by329

example to the dynamics of signal tile assembly.330

DNA28



XX:8 Universal Shape Replication Via Self-Assembly With Signal-Passing Tiles

Detector Gadgets331

Detector gadgets are used to detect when a specific set of tiles exist in a particular configuration332

relative to one another in an assembly. For a detector gadget to work, the tiles to be detected333

need to each be presenting a glue unique to the configuration to be detected. The strength334

of these glues should add to at least the binding threshold τ , but the total strength of any335

proper subset of the glues should not. If two or more tiles then exist in the configuration336

expected by the detector gadget, the gadget can cooperatively bind with the relevant glues.337

Upon binding, any signals with the newly bonded glues as a source will fire. These signals338

can be in the “detected tiles” or in the detector itself and can be used to initiate some other339

process based on the condition that the tiles exist in the specified configuration. More often340

than not, it’s also desirable for signals within the detector gadget to deactivate its own glues341

so that it does not remain attached to the assembly after the detection has occurred.342

Figure 3 A simple detector gadget example.

Detector gadgets can exist in many forms343

depending on the configuration to detect,344

but the most simple is a single tile. Illus-345

trated in Figure 3 is a simple detector gadget346

designed to detect 2 diagonally adjacent tiles,347

each presenting a strength-1 glue of type d348

towards a shared adjacent empty tile loca-349

tion. In this case, τ = 2 and the detected350

tiles are designed to activate their x glues351

upon a successful detection. In general, de-352

tector gadgets can be made up of more than353

1 tile. Duples of tiles can be used for in-354

stance to detect immediately adjacent tiles each presenting some specific glue on the same355

side. For detector gadgets consisting of more than 1 tile, the component tiles must be356

designed to have unique τ -strength glues between them so that the components can bind357

together piece-wise to form the whole gadget. Because all of the glues presented for the358

detection are needed to reach a cumulative strength of τ , only after it is fully formed will it359

be able to detect tiles and thus partially assembled detector gadgets will not erroneously360

perform partial detections. It is assumed in our results that signals within a detector gadget361

itself will cause the gadget to dissolve after a detection.362

Corner Gadgets363

Figure 4 A corner gadget example.

Corner gadgets are a specific type of detector gadget which are used primarily for facilitating364

the attachment of other tiles on the surface of some assembly. Corner gadgets can either be365

2D, consisting of 3 tiles arranged in a 2 × 2 square with one corner missing, or 3D, consisting366



A. Alseth, D. Hader, and M. J. Patitz XX:9

of 7 tiles arranged in a 2 × 2 × 2 cube with one of the corners missing. Because of this367

shape, a corner gadget is able to cooperatively bind to any single tile of an assembly with 2368

accessible, adjacent faces. These faces must be presenting specified glues whose cumulative369

strength is at least τ , but neither individually is. Illustrated in Figure 4 is the side view of370

a 2D corner gadget attaching to an assembly. After the attachment, it is then possible for371

additional tiles to cooperatively bind along the surface of the assembly. This behavior is372

useful for initiating the growth of shells of tiles around an assembly as will be seen in our373

later construction.374

Like with detector gadgets, signals fired from the binding of a corner gadget can also be375

used to initiate other tasks, though special care needs to be taken for 3D corner gadgets376

when τ = 2. Because a 3D corner gadget has 3 interior faces which can have glues to bind377

with a tile on the corner of an assembly, it is often desirable to fire signals from all 3 of378

these glues; however, because only 2 glues are necessary to meet the binding threshold when379

τ = 2, the third may not form a bond immediately. If it is planned for the corner gadget380

to eventually detach, then it is crucial that any signals causing the corner gadget to detach381

cannot fire until all 3 of the interior glues have first bound. This can often be accomplished382

using sequential signaling as described below.383

Figure 5 Sequential signaling example.

Sequential Signaling384

By carefully adding additional helper glues and signals to a tile or tiles, we can ensure that385

signals in our tiles are fired in a specific order or ensure that a certain set of glues has386

successfully bound before certain signals are fired. The way in which this is done depends387

on the exact situation, but as an example consider the situation illustrated in Figure 5.388

In this situation we want the green tile to cooperatively bind to the assembly via glues of389

type a and b. Once this happens, we want to first activate additional glues of type u and v390

between the green tile and assembly so that each side of the green tile is attached to the391

assembly with strength 2, then we want glues of type x on the other sides of the green tile392

to activate. The arrangement of signals illustrated in Figure 5 guarantees that the x glues393

cannot activate before both the u and v glues do, since the signals which activate the x glues394

are dependent on the glues u and v. A similar arrangement of signals and glues is used to395

implement gadgets called filler tiles in our construction.396

Tile Conversion397

It is often useful for tiles to change behavior after receiving a specific signal. This can be398

done by having signals activate a new set of glues on the tile and deactivate old ones. This399

can be thought of as converting the tile into a different type of tile, but it’s important to400

DNA28



XX:10 Universal Shape Replication Via Self-Assembly With Signal-Passing Tiles

note that this process cannot happen indefinitely nor arbitrarily. Every tile conversion has401

to be prepared in the signals and latent glues of the tile and once those signals fire, they402

cannot fire again. It is possible for a tile to convert to another several times, but such a tile403

must have the necessary glues and signals for each conversion separately. It is also often404

possible achieve this behavior by detachment of one tile and attachment of another in the405

same location, though special care needs to be taken so that no other tiles can attach in the406

location during the conversion.407

Tile Dissolving408

For any arbitrary set of glues on a tile, we use the term dissolving to refer to the process of409

initiating signals which turn all possible glues to the off state (Figure 6). We note that due410

to the asynchronous nature of the model that no guarantee can be made with regards to the411

order of the processing of the signals. Tiles break apart from their supertile once a strength412

τ bond no longer exists between itself and its neighbor tiles. However other glues may be413

active when the tile does so, leading to the possibility of undesired binding due to exposed414

glues which are in the on state with a pending off signal.415

Figure 6 For some glue which initiates the dissolution of a tile, when bound to its complement it
can send messages to all glues on all faces to turn to the off state. We use the flat head to indicate
that the glue adjacent to the flat head is sent an off signal by the binding of the glue at the opposite
end of the line. Such a glue can potentially be present on each face of a tile.

Message Following416

We show how to pass a message through a sequence of tiles such that after the message has417

been passed, a second message can be passed through the exact same sequence of tiles in418

the same order. For example, signals propagate a g message through a sequence of tiles419

{Ti}n
i=0 (not necessarily distinct). We then propagate a br message through a series of glue420

activations such that this message follows the sequence of tiles {Ti}n
i=0 in that order. In this421

case, we say that the br message follows the g message.422

Figure 7a shows a g message being passed through a tile. Let TG denote this tile. This423

message enters from the south and then may potentially be output through the north, east,424

or south depending on if collisions occur. The goal is to ensure that a second message can be425

output through exactly that same side (and no others). Other cases where the g message426

enters through the north, east, or west are equivalent up to rotation. For each possible427

output signal of the g glue in TG, we define glues on the signal input side of the TG which428

are activated by the output g glue being bound. As shown in Figure 7a, the north g glue429

activates brn′, the east g glue activates bre′, and the south g glue activates brs′. Informally,430



A. Alseth, D. Hader, and M. J. Patitz XX:11

the activated brn′, bre′, or brs′ glue “records” the output side of the g message. In the case431

shown in Figure 7a where the g message enters from the south, the brn′, bre′, and brs′ glues432

are sufficient for recording the output side of the g message. In cases where the g message433

enters through the north, east, or west, a brw′ glues is required to record the case where434

the g message exits through the west side of a tile. The br signal is then propagated using435

brn′, brs′, bre′, and brw′ glues. Figure 7b depicts the signals and glues for propagating the436

br signal in the case where the g message enters from the south. In this case the br signal437

will also enter from the south. The br signal is propagated through TG as exactly one of the438

brn′, brs′, and bre′ glues binds to one of the brn, bre, and brs glues on the output side of a439

tile to the south of TG that is propagating br. All of the brn, bre, and brs glues must be440

activated as the tile to the south of TG has no ability to know which direction the g message441

of TG will take. The br signal passed to TG will have the same output side as the g signal.442

For example, if the g message enters from the south and exits through the east, then, as443

shown in Figure 7a, the glue bre′ will be activated; brn′ and brs′ will remain latent. Then,444

as the br signal propagates through the tile to the south of TG, brn, bre, and brs are all445

activated on the north side of the tile. When bre and the bre′ glue on the south edge of446

TG bind, this binding event activates the glues bre, brs, and brw on the east edge of TG,447

effectively propagating the br signal to the tile to the east of TG. This is shown in Figure 7b.448

Notice that there are no signals belonging to TG that fire when brs′ binds. This is because449

no signals are needed to propagate br to the south of TG. The binding of brs and brs′ are450

enough to propagate br to the south of TG.

(a)
An example of signals
used to propagate an
g message CCW.

(b) A br message that
is following a previ-
ously passed g mes-
sage.

Figure 7 Tiles which demonstrate signal following.451

3 3D Shape Replication452

In this section, we show that there is a tileset in the STAMR which is capable of replicating453

arbitrary shapes. This is stated in Theorem 13, and we prove it by providing modular454

constructions capable of encoding and decoding arbitrary sets of shapes which are given by455

Lemma 14 and Lemma 15, respectively, and then discussing how they can be combined to456

replicate shapes.457

▶ Theorem 13. There exists a tileset R in the STAMR which is a universal shape replicator,458

such that for the systems using R (1) all input assemblies are uniformly covered, (2) the459

constant c which bounds the size of the junk assemblies equals 4, and (3) they finitely complete460

with respect to a set of terminal assemblies with the same shapes as the input assemblies.461

DNA28



XX:12 Universal Shape Replication Via Self-Assembly With Signal-Passing Tiles

▶ Lemma 14. There exist a shape encoding function fe, and a tileset E in the STAMR
462

which is a universal shape encoder with respect to fe, such that for the systems using E (1)463

all input assemblies are uniformly covered, (2) the constant c which bounds the size of the464

junk assemblies equals 4, and (3) they finitely complete with respect to a set of terminal465

assemblies which encode the shapes of the input assemblies.466

▶ Lemma 15. There exist a shape decoding function fd, and a tileset D in the STAMR
467

which is a universal shape decoder with respect to fd, such that for the systems using D (1)468

the constant c which bounds the size of the junk assemblies equals 3 and (2) they finitely469

complete with respect to a set of terminal assemblies with the same shapes as those encoded470

by the input assemblies.471

We now prove Lemmas 14 and 15, and consequently Theorem 13, by construction. In472

the following few sections we describe the process by which an STAMR system can encode473

arbitrary shapes. We then show how an STAMR system can construct arbitrarily shaped474

assemblies from the encodings produced by the encoding system. Additionally, these systems475

make use of universal tilesets E and D respectively, meaning that regardless of the shapes476

to be encoded or decoded, our systems never require additional tiles besides those from477

E and D. These tilesets can then be combined to create a tileset R = E ∪ D which is478

then a universal shape replicator. It should also be noted that constructing the universal479

encoder and decoder separately allows for additional complex tasks to be performed in the480

STAMR. For example, tiles are capable of simulating the execution of Turing machines to481

perform arbitrary computation. As will be briefly discussed later, this means that once482

shapes have been encoded, it is then possible to manipulate the encodings using simulated483

Turing machines before the decoding process. Such behavior is clearly much more general484

than shape replication.485

3.1 Forming a bounding box and electing a corner as “leader”486

Here we describe the process by which a set of arbitrary shapes S = {s1, . . . , sn} can be487

encoded in the STAMR using a universal tileset E. It should be noted that we don’t explicitly488

list each tile type in E; rather, much like how it is more useful to use pseudo-code instead of489

compiled machine code when describing an algorithm, we describe the tiles in E implicitly490

by their functionality, noting that there are many essentially equivalent ways to design tiles491

which perform the necessary tasks and a discussion of the finer details regarding exactly492

which signals and glue types are used in each instance would be less informative.493

Given our set S of shapes, we define our STAMR system ES to be the triple (E, ΣS , τ = 2)494

where ΣS is our initial system state containing assemblies of the shapes in S. This state495

consists of all tiles in E, each with an infinite count, and additionally consists of a set496

A = {α1, . . . , αn} of uniformly covered, deconstructable assemblies such that the shape of497

αi is si for i = 1, . . . , n. The assemblies of A are called our shape assemblies and are made498

only of tiles from a fixed subset of E called shape tiles. Note that the glues and signals499

defined in these shape tiles are not used to encode any information regarding the structure of500

our shape assemblies; any shape specific information is inferred during the encoding process501

and the shape tiles simply contain the necessary glues and signals to perform basic tasks502

required for the encoding process, none of which are specific to any particular part of the503

shape assemblies. Additionally, we will define tile encoding and decoding functions, fe and504

fd during our construction. Essentially our encoding of a shape consists of a sequence of505

rows of binary values, each row corresponding to a 1-dimensional slice within the minimal506



A. Alseth, D. Hader, and M. J. Patitz XX:13

bounding box of our shape, with 1 representing a location in the shape and 0 representing a507

location not in the shape.508

The encoding process described below can be largely broken down into 3 steps. First, a509

bounding box is constructed around the shape assemblies using special tiles which are distinct510

from the shape tiles. Then, one of the corners of the box is elected non-deterministically to511

be the leader corner to provide an origin point which will represent the first tile location512

of our encoding. Finally, from the leader corner, the shape will be disassembled tile-by-tile513

during which an encoding assembly will be constructed, recording for each disassembled tile514

whether it is part of the shape or not (i.e. a “filler” tile used to assist the construction).515

During our description of the encoding process, we will follow the process for a single shape516

assembly αi, but note that all shape assemblies are encoded simultaneously in parallel in ES .517

3.1.1 Bounding Box Assembly Construction518

The first step in our encoding process begins by forming a bounding box assembly βi through519

the attachment of special tiles, called filler tiles, to αi. These filler tiles cooperatively bind520

to 2 diagonally adjacent tiles of our shape assembly in order to fill out any concave portions.521

When a filler tile attaches to an assembly, signals are fired from the newly bound glues which522

activate additional glues between the filler tile and shape assembly. These new glues ensure523

that the filler tile is bound with strength 2 on each face to the shape assembly as this will524

be important during the disassembly process. After the filler tile is firmly attached with 2525

strength-2 bonds, signals are then fired within the filler tile which activate strength-1 glues526

of type gf on all other faces. These will be used for further filler tile attachment. Figure 8527

illustrates the attachment of a filler tile to an assembly and shows how sequential signaling528

is used to ensure that the filler tile is attached with strength 2 on both of its input faces529

before activating glues on each of its output faces.530

Because filler tiles must be able to cooperatively bind to both shape tiles and other531

previously attached filler tiles, we need 3 unique types of filler tiles: One which initially532

presents 2 glues of type g∗
x to bind with 2 shape tiles, one which initially presents 2 glues533

of type g∗
f to bind with 2 other filler tiles, and one which presents one of each glue to534

cooperatively bind with a shape tile and a filler tile. Each type of filler tile is otherwise535

identical. Because we’ve chosen our binding threshold τ = 2, the two initially present glues536

are sufficient for binding into any location on the assembly with at least 2 adjacent shape or537

filler tiles. The signals from the binding of these glues then activates additional glues on the538

same faces which ensures that the filler tile is attached with strength 2 on two separate faces,539

regardless of whether or not additional filler tiles later bind to this one. This property will540

be used to guarantee that the assembly stays connected during the disassembly process.541

Eventually, after sufficiently many filler tiles have attached, there will be no more locations542

in which another filler tile can attach. There are often many ways in which this can occur543

for any shape assembly, but the resulting bounding box assembly will always be a minimal544

bounding box of our shape. It should be noted that its possible that not every location545

within the bounding box is filled. This can occur if the original shape had enclosed cavities,546

but can also occur because the attachment of filler tiles can create additional cavities as they547

attach. This is not a problem and it will always be possible for filler tiles to complete the548

outer surface of the bounding box. Additionally, this bounding box will be uniformly covered549

by glues of type gx and gf .550

DNA28



XX:14 Universal Shape Replication Via Self-Assembly With Signal-Passing Tiles

Figure 8 Filler tile binding to a concave site. Once a filler tile attaches cooperatively, signals
activate glues on the filler tile and adjacent tiles. These glues ensure that the filler tile is attached
with strength 2 on all sides. These glues are activated sequentially and once both are in the on
state, signals activate output glues on all other sides of the filler tile. Once these signals activate,
the super tile has 1 fewer concave site and the filler tile behaves as though it is just another tile on
the supertile. While depicted in 2D for clarity, this occurs in 3D during our construction, but the
idea is the same.

Figure 9 Growth of the inner shell around a bounding box (illustrated in gray). Growth begins by
the attachment of corner gadgets (red). Cooperative binding with the corner gadgets and bounding
box allow edge tiles to attach (yellow). Cooperation between the edge tiles and the bounding box
then allow filler verification tiles (blue) to grow which are used to fill in the faces of the inner shell.
The process by which these verification tiles bind to the bounding box ensures that there are no
gaps or protrusions on the bounding box surface.

3.1.2 Detecting Bounding Box Completion551

In order to continue with the encoding process, we first need to verify that the bounding552

box is fully formed. This is done by growing a shell of tiles around our assembly. This553

shell, which we call the inner shell, is able to grow to completion only if the assembly is a554

fully formed bounding box. Figure 9 illustrates the high-level construction of the inner shell555

around a fully formed bounding box.556

Growth of the inner shell begins with the attachment of corner gadgets to our assembly.557

We use 2 types of 3D corner gadgets, one which is able to bind to a corner of our assembly558

presenting 3 glues of type gx and one which is able to bind to a corner presenting 3 glues559

of type gf (note that at τ = 2 only two glues are needed for a corner gadget to attach, but560

any tile allowing a corner gadget to attach must expose all 3). That is, the corner gadgets561

can attach either to a shape tile or a filler tile on a corner of our assembly. Note that these562

gadgets exist in our system while the bounding box is being constructed; therefore, it’s563

possible that corner gadgets attach to tiles in our assembly before the bounding box has564

been fully constructed. Additionally, special care needs to be taken when the bounding box565

surrounding our shape assembly has at least one side of dimension 1. The details of the inner566

shell’s construction is described below and these various cases are addressed.567

When a corner gadget attaches to our assembly, signals from the attachment cause568

strength-1 glues to activate on the faces of the corner gadget which point parallel to the569

surface of our assembly. These glues will be used to allow cooperative attachment of special570



A. Alseth, D. Hader, and M. J. Patitz XX:15

edge tiles that will attach in a line along the edges of a completed bounding box. The glues571

activated on the corner gadget can either be of type gL
edge or gR

edge depending on which face572

of the corner gadget they reside. Glues of type gL
edge indicate that the edge to be grown is a573

left edge of the bounding prism relative to the direction of growth of the edge while glues of574

type gR
edge indicate a right edge.575

Like filler tiles, edge tiles initially have 2 active glues on adjacent faces: one of these576

glues is either of type gL∗
edge or gR∗

edge so as to be complementary to the glue presented by the577

corner gadget, and one of type g∗
x or g∗

f so as to also be complementary to a glue on the578

surface of our assembly. Since any combination of these glues is necessary, there are 4 unique579

types of edge tiles. Once an edge tile has cooperatively attached to our assembly, signals580

are fired which activate another glue of type gL
edge or gR

edge to allow additional edge tiles to581

cooperatively attach to it and the assembly. Additionally, glues are activated on all other582

exposed sides of the edge tile which will be used by detector gadgets later. These glues are583

unique to the specific face of the edge tile so that detector gadgets can distinguish between584

the interior and exterior sides of an edge as well as the side of the edge tile pointing away585

from the assembly. Although tiles are allowed to rotate in the STAMR and don’t have fixed586

orientations, this directionality can be enforced by the relative orientations of the two glues587

used for the initial binding of a tile. Edge tiles will continue to grow along the surface of our588

assembly from corner gadgets until they are either blocked by another tile, reach the end of589

the surface of our assembly, or it is detected that the edge is invalid.590

Figure 10 Detecting and resolving invalid edges

For an edge to be valid, there must be591

no shape or filler tiles adjacent to any edge592

tiles except for those underneath the edge593

tiles to which the edge tiles cooperatively594

attached; additionally, if an edge is a right595

(respectively, left) edge, then there must not596

be a shape or filler tile occupying a location597

diagonally adjacent to the right (resp., left)598

of the edge tiles making up the edge with re-599

spect to the forward growth direction of the600

edge. Edge tiles which violate these valid-601

ity conditions can be easily detected using602

detector gadgets specific to the particular603

situation as illustrated in Figure 10. Follow-604

ing the attachment of such a detector gadget, a signal is propagated along the edge causing605

all connected edge tiles and corner gadgets to dissolve. Before this signal is propagated606

though, signals from the detector gadget ensure that a new filler tile is effectively added to607

the assembly in a safe location (that is without causing the eventual bounding box to be608

bigger than necessary). This is done using signals from the detector gadget to convert one of609

its own tiles or the detected invalid tile into a filler tile. This conversion is done so that we610

don’t risk infinite assembly sequences wherein a corner gadget attaches, attempts to grow an611

invalid edge, and dissolves repeatedly. Because a filler tile is always effectively added upon612

detection of an invalid edge, eventually it will be impossible for invalid edges to occur.613

In the case where a valid edge is blocked by another tile, then there are 2 possibilities:614

(1) the edge is blocked by a shape or filler tile, or (2) the edge is blocked by another edge or615

corner gadget. If a filler tile blocks the path, then like with invalid edges, a detector gadget616

can cooperatively bind to the blocking tile and the edge tile, convert the edge tile into a filler617

tile, and propagate a dissolve signal down the remaining edge tiles. If another edge tile or618

DNA28



XX:16 Universal Shape Replication Via Self-Assembly With Signal-Passing Tiles

corner gadget blocks the edge, then we need to determine if the blocking tile is part of a619

valid edge. If the edge is invalid, then it will eventually dissolve and nothing needs to be620

done. Otherwise, the tile blocking our edge belongs to another valid edge. In this case the621

meeting point can either be at a corner of our assembly or along the edge of our assembly.622

Because of the unique glues presented on all sides of an edge tile, these situations can easily623

be differentiated by detector gadgets. If the meeting point is a corner, then signals from the624

corresponding detector gadget will cause the corner to convert to a piece of a corner gadget.625

The remaining corner gadget pieces can then attach and the result will be a corner gadget626

connected to two incoming edges. If the meeting point is an edge, the detector gadget will627

fire signals to activate glues between the colliding edge tiles connecting the edge tiles and628

allowing future signals to propagate between them.629

3.1.3 Dissolving Edge Tiles and Corner Gadgets630

Care must be taken when dissolving edge tiles and corner gadgets to avoid erroneous631

attachments of tiles which have dissolved, but on which not all of the glues have yet632

deactivated. When dissolving edge and corner tiles, we use a procedure called careful633

dissolving to guarantee safe detachment. To understand this procedure first note that,634

we make a distinction between those glues which were initially active on a tile before it635

attached to an assembly, which we call prior glues, and those which activated after the initial636

attachment, called posterior glues. Here we make one exception regarding the strength 2637

glues present between the outermost corner tile of a corner gadget and its 3 neighboring tiles,638

these are classified as corner glues and will be handled differently. Also, in addition to all of639

the functional glues present on an edge tile or corner gadget tile, when two edge tiles bind640

to each other, a strength 1 pair of glues of type gd and g∗
d, called dissolve helper glues, are641

activated between them. Corner gadgets also have these glues activated between their tiles,642

but this is done in a tree-like structure with the root being the outermost corner tile. This643

tile shares dissolve helper glues with the 3 corner gadget tiles adjacent to it, and these share644

dissolve helper glues with the 3 corner gadget tiles which cooperatively bound in between,645

though only on 1 face each so as to form a tree.646

Careful dissolving begins when a detector gadget binds to an edge or corner gadget tile.647

This binding initiates a dissolve signal that propagates along the edge and corner gadget648

tiles, deactivating all prior glues. Now suppose γ is a group of connected edge tiles which649

have detached from the assembly as a result of these deactivations. By our tile design, prior650

glues always only bind with with either posterior glues or bounding box glues (gx or gf ), and651

posterior glues, which are always strength 1, only bind with prior glues. Notice that γ can652

be presenting at most 1 prior glue of strength 1, otherwise it would not have detached from653

the assembly, though it may have any number of posterior glues and some dissolve helper654

glues. Because attachment to an assembly requires either a prior glue of strength 2 or two655

prior glues of strength 2 to bind with posterior glues exposed by a bounding box assembly, γ656

is effectively inert. It is possible that two detached junk assemblies have dissolve helper tiles657

exposed, but any cooperation between these junk assemblies would require the cooperation658

of a dissolve helper glue and a prior/posterior glue pair to occur. This may happen, but659

eventually the prior glue will deactivate and the combined junk will dissolve.660

By the connectivity offered by the dissolve helper tiles, even as γ further breaks up into661

smaller assemblies or individual tiles, this property is preserved, since in addition to the662

dissolve helper glues between each pair of tiles in γ, any glues holding tiles together form a663

prior/posterior pair. For a strength 1 cut to exist in γ, allowing it to break apart, it must be664

the case that the prior glue deactivates between the tiles, otherwise they will still be held665



A. Alseth, D. Hader, and M. J. Patitz XX:17

Figure 11 If, as a surface of the inner shell is growing, it is found that there are shape or filler
tiles still protruding from that surface of the bounding prism, then a detector gadget will be able to
cooperatively bind with the protruding tile and adjacent verification tile. The verification tile will
then be converted into a filler tile and the other verification tiles, edge tiles, and corner gadgets will
be dissolved. In this illustration, a verification tile is adjacent to a protrusion which is 2 tiles high.
There are a few other possible configurations of verification tiles next to protrusions, each requiring
a unique detector gadget, but the idea is the same in each.

together with at least strength 2. Eventually, we will be left with only individual inert tiles666

or the 4 tiles that make up the corner of a corner gadget which will also be inert by the same667

argument. Thus we have a maximum junk size of 4. Careful dissolving is possible so long as668

the above conditions regarding prior and posterior glues are met. This is true for all gadgets669

and tiles used during the leader election process, so during the leader election process, when670

we say that a dissolve signal is propagated, we mean that careful dissolving occurs between671

those tiles.672

3.1.4 Filler Verification673

When the edges growing from 2 corner gadgets meet via edge tiles between them along the674

surface of a bounding prism, signals between them through the edge tiles activate glues675

which allow a filler verification process to begin. This process proceeds in iterations growing676

inwards towards the surface’s center and verifies that there are no gaps or protrusions in the677

surface. If gaps are found, nothing happens until those gaps are filled with filler tiles, after678

which the verification continues. If protrusions are found, then as illustrated in Figure 11,679

detector gadgets are able to cooperatively bind with a verification tile and a shape/filler tile680

of the protrusion. Signals from this attachment cause the verification tile to become a filler681

tile and cause all other involved verification tiles, edge tiles, and corner gadgets to dissolve.682

The filler verification procedure is as follows. When the edge between two corner gadgets683

is filled with edge tiles, a signal is able to propagate between the corner gadgets. Once a684

corner gadget has received signals from its 2 neighboring corner gadgets, glues are activated685

on the adjacent edge tiles allowing the cooperative binding of a tile called a verification corner686

tile. This verification corner tile attaches diagonally adjacent to the corner gadget within687

the region bounded by the edge tiles. Additionally, signals from the corner gadgets activate688

glues on the other edge tiles which allow special verification edge tiles to cooperatively bind689

with the edge tile and surface of the bounding prism. If there is a gap preventing such a690

binding, it will simply not occur until filler tiles attach to fill the gap. If there is a protrusion,691

a detector gadget will be able to cooperatively bind with a filler/shape tile on the protrusion692

and a verification tile. That verification tile will then convert to a filler tile through signals693

fired from the detector gadget and all other involved edge tiles, verification tiles, and corner694

gadgets will dissolve. If no protrusion is found, the process repeats with the verification695

corner tiles acting as the corner gadgets and verification edge tiles acting as the edge tiles. A696

new iteration of the verification process will begin in the next inner layer of the surface.697

This process will continue until the center is reached. This can happen in 2 different698

ways depending on whether the shortest side of the surface is of even length or odd length.699

DNA28



XX:18 Universal Shape Replication Via Self-Assembly With Signal-Passing Tiles

Figure 12 During the surface verification process, tiles attach within the rectangle formed by
edge tiles on a surface. These tiles attach in layers growing towards the center of the shape. Once
the corners of a layer are adjacent, or in the case of an odd side length when one corner touches three
sides of the previous layer, a detector gadget can bind. Signals activated by this binding indicate
that the verification process was successful and the verification tiles are dissolved

(See Figure 12.) If the shortest side of the surface is of even length, then eventually 2700

verification corner tiles will be adjacent to each other. A duple detector gadget will be able701

to cooperatively bind with those tiles indicating that the center has been reached. This702

will happen on both pairs of adjacent corner verification tiles and once the verification edge703

tiles attach between them, signals will be able to propagate between the pairs of corner704

verification tiles. These signals will propagate back along the iterations of the verification705

tiles and activate glues on the corner gadgets which will allow for the growth of the outer706

shell to begin on this face of the bounding prism. If the shortest side of the surface is of odd707

length, the process is similar, but instead of 2 verification corner tiles being adjacent, there708

will be a single verification corner which is adjacent to either 2 verification corner tiles from709

the previous iteration, or all 4 if the surface of the bounding prism was a square. In either710

case, detection gadgets will be able to initiate signals which inform the corner gadgets that711

verification of this face is complete. Additionally, upon completion, a dissolve signal causes712

all glues on the verification tiles to turn off and the verification tiles themselves to dissolve.713

3.1.5 Handling Thin Shapes714

The process described above assumes thick shapes, those whose minimum bounding box has715

no sides of length 1. To handle thin shapes (i.e. those shapes that are not thick), first note716

that for every corner gadget attached to a thin shape, there will be at least one direction717

where no edge tile can cooperatively attach to the corner gadget and shape assembly. This718

can be detected by a detector gadget and upon detection signals will be fired accomplishing719

2 tasks: (1) glues will be activated on the corner gadget which allow other corner gadget tiles720

to attach as if two mirrored corner gadgets were overlapping along the thin edge, and (2) edge721

tiles running along the thin edge of the assembly from the corner gadget will be dissolved722

and the outgoing gL
edge or gR

edge glue from the corner gadget will be deactivated and replaced723

by a newly activated glue of type gT
edge. We call corner gadgets that have been modified in724

this way extended corner gadgets. To the glue of type gT
edge, a different type of tile, called725



A. Alseth, D. Hader, and M. J. Patitz XX:19

a thin edge tile, can cooperatively attach to the assembly and corner gadget. Thin edge726

tiles behave similarly to regular edge tiles and grow sequentially along the assembly. Upon727

meeting another thin edge tile, like with normal edge tiles, a detector gadget cooperatively728

binds and activates glues on the thin edge tiles allowing them to bind with each other if they729

meet along a thin edge or converting the thin edge tiles into corner gadget tiles if they met730

at a corner. If the path of the thin edge tiles is blocked by a shape or filler tile, a detector731

gadget can cooperatively bind and the last thin edge tile is converted to a filler tile and a732

dissolve signal is propagated down the remaining edge tiles.733

In the case where our initial shape assembly is a thin rod, having dimensions 1 × 1 × m,734

the corner gadgets which bind to the ends of the ends of the rod will be extended twice (or 3735

times if m = 1). Detector gadgets can be used to determine that a corner gadget has been736

extended more than once and signals from the attachment of these detector gadgets will737

activate the same glues on the corner gadgets indicating that filler verification is complete738

for the corresponding 1 × 1 side of the assembly.739

3.1.6 Outer Shell Construction740

Whenever the filler verification process is completed on a surface of the bounding prism,741

signals activate glues on the corner gadgets of that surface which initiate the growth of an742

outer shell. The glues activated on the corner gadgets exist on the outward pointing faces of743

the tiles between edge tiles and allow tiles called outer shell tiles to bind with strength 2744

to these locations as illustrated in Figure 13. Once attached, these outer shell tiles present745

strength-1 glues of type gout on all sides except the one that points away from the assembly.746

Another type of tile, called an outer edge tile, is then able to cooperatively bind to these747

outer shell tiles and the edge tiles from the inner shell. These outer edge tiles also present748

gout glues which further allow other outer edge tiles to cooperatively bind on top of the edge749

tiles from the inner shell. When two outer edge tiles meet along an edge, detector gadgets750

can cooperatively bind to the pair causing them to activate glues between each other and751

bind.752

Additionally, special corner gadgets called outer corner gadgets bind with 3 outer shell753

tiles on the corners of the assembly. (Because in our construction τ = 2, outer corner754

gadgets really only cooperatively bind with 2 of the outer shell tiles to attach, but by using755

sequential signaling, we can ensure that they do not propagate their signals to other outer756

corner gadgets until they are bound to all 3 outer shell tiles on their respective corner of the757

assembly.) These outer corner gadgets are different from normal corner gadgets in that they758

have 12 tiles as illustrated in Figure 13. Once an outer corner gadget attaches, signals are759

propagated along outer shell and outer edge tiles to adjacent outer corner gadgets.760

When an outer corner gadget has received this signal from all 3 of its neighbor outer761

corner gadgets, a dissolve signal is propagated to the inner shell corner gadget below. This762

signal prompts that corner gadget and its edge tiles (but not any other corner gadgets) to763

dissolve and additionally causes glues, called candidate glues, of type gcand to activate on764

the corners of the bounding box assembly underneath and glues of a complementary type765

g∗
cand to activate on the interior corners of the outer corner gadgets. Because of the condition766

under which these signals are fired, an outer corner gadget will not signal its underlying767

inner shell corner gadget to dissolve until all of the outer shell corner gadgets neighbors are768

bound to the assembly. Consequently, even though the outer shell gadgets cause the inner769

shell between them and the assembly to dissolve, the outer shell will remain attached to770

the assembly on at least one corner until all outer corner gadgets have attached. Once the771

final outer corner gadget attaches however, the inner shell underneath will be able to fully772

DNA28



XX:20 Universal Shape Replication Via Self-Assembly With Signal-Passing Tiles

Figure 13 Once filler verification has successfully occurred on a surface of our bounding box,
outer shell tiles attach to the edge tiles and corner gadgets on that surface to form a rectangle.
Between the corners of these rectangles, outer corner gadgets can cooperatively bind. Once the
corner gadgets have attached sufficiently to the outer shell tiles and the necessary connectivity
conditions have been met, inner shell tiles are dissolved from between the outer shell and bounding
box assembly. Illustrated using a cross-section view, the detachment of these tiles leaves us with
a detached bounding box assembly that is too large to fit in the gaps of the outer shell, but too
small to touch more than one interior corner of the outer shell simultaneously. Because of this, the
bounding box assembly can then bind to an interior corner of the outer shell, but only on one corner,
which is then elected leader.

dissolve and we will be left with our bounding box enclosed within but not attached to the773

outer shell. While the bounding box will be free to move (slightly) within the outer shell, it774

will be trapped inside of it due to their relative sizes.775

Because the corners of the bounding box and interior corners of the outer shell have776

complementary glues, the corners of the bounding box assembly are able to bind to the777

interior corners of the outer shell; however, because the interior of the outer shell is larger778

than the bounding box itself, only 1 corner will be able to touch the outer shell at any given779

time, and thus to bind. The corner of the bounding box which happens to bind is elected780

leader and a special glue glead on that corner is activated. Additionally, the binding of the781

bounding box assembly to the outer shell causes signals to propagate which cause the g∗
cand782

glues on the outer shell to deactivate and then cause the outer shell to dissolve. We are then783

left with a bounding box with 1 corner “elected as leader” and containing a glead glue from784

which the disassembly process can begin.785

3.2 Shape encoding786

Following the process of leader election on a bounding box, we are presented with a single787

corner with unique glues exposed indicating a leader tile. Here we describe the tiles of E788

which allow for the the universal shape encoding function fe to be implemented on the shape789

contained in a bounding box. We use the term voxels to reference the locations of Z3 in the790

bounding box, which may contain shape tiles, filler tiles, or no tiles as there may still be791

cavities within the box.792

At a high level, the encoding of a shape is generated by a process which visits each793

voxel in the bounding box sequentially, and transfers the information of whether the voxel is794

inhabited by a filler tile or a shape tile to a new encoding assembly ϕ. The set of all encodings795

of shapes S = {s1, . . . , sn} is Φ = {ϕ1, . . . , ϕn} where ϕi is the encoding of si for i = 1, . . . , n.796

The first step in the process is for an encoding corner gadget (see Figure 15) to bind to the797

corner elected as leader, and then construct a set of helper tiles around the bounding box.798

Deconstruction is then carried out in slices, where each slice is the set of voxels contained799

in a 2D subset of the bounding box. The starting voxel contains the tile elected leader800

(see Figure 14) and the orientation of the binding of the encoding corner gadget arbitrarily801

defines the orientation of the slices. For ease of explanation, once an orientation has been802



A. Alseth, D. Hader, and M. J. Patitz XX:21

Figure 14 An example bounding box. The teal, fuchsia and purple tiles inhabit the slice of the
bounding box of the xy plane where z = 0. The fuchsia tile, which was elected the “leader”, is
treated as the origin (0, 0, 0). The fuchsia and purple tiles inhabit the first row, where y = 0. The
red tiles demonstrate the remaining tiles of the bounding box. We note that these tile colors are
reused in figures throughout the remainder of this section, however take on other meanings in their
respective contexts.

chosen by the attachment of the encoding corner gadget, we choose the x and y directions to803

correspond to the axes along a slice and the z direction to be the axis perpendicular to x and804

y into the bounding box from the leader. Specifically, each xy plane of the bounding box805

constitutes one slice. The end result of the encoding process is a rectangular prism assembly806

of height 1 where the each tile corresponds to a unique location of the bounding box in Z3,807

and whose glues represent whether or not each location contains a shape tile (represented by808

a 1), or empty space inhabited by a filler tile or otherwise (represented by 0). Additionally,809

information about the order in which tiles were deconstructed is included in ϕi for purposes810

of decoding and defining the width of a row. We note that the tiles in this section obey the811

careful dissolving property in Section 3.1.3.812

3.2.1 Creation of a deconstruction shell813

The first step of the encoding process is for an encoding corner gadget (Figure 15), similar in814

structure to the corner gadgets utilized in the leader election process, to bind to the leader815

corner. We then treat that corner as the origin of our shape, where the directions of the x, y,816

and z axes are shown in Figure 16. This reference point and orientation allows us to assign817

coordinates to each voxel of the bounding box. Of key importance during the deconstruction818

process is that the deconstructing supertile remains connected with strength 2 at all times. It819

is given that the shape tiles are connected with strength 2, and filler tiles similarly connect to820

both shape tiles and each other with strength 2. However, filler tiles are connected to only the821

2 tiles which caused their cooperative placement and exterior filler tiles expose only strength822

1 gf glues. To ensure that during the deconstruction process no tiles prematurely disconnect823

from the bounding box (and to provide additional functionality during the deconstruction824

process), shell tiles are added which create a shell around the bounding box and utilize the825

signals demonstrated in Figure 8 to enable strength 2 connections with the exterior-most fill826

tiles. At the end of the creation of the deconstruction shell (which we will also simply refer to827

as the ‘shell’), the bounding box will have all tiles on its faces covered, aside from those that828

are part of the first slice of the bounding box to be encoded. The shell consists of three parts829

corresponding to tile types: (1) the shell base, tiles which cover one face of the bounding830

DNA28



XX:22 Universal Shape Replication Via Self-Assembly With Signal-Passing Tiles

Figure 15 Encoding corner gadget utilized to bind to the elected corner. The faces with arrows
pointing towards them are those which begin with glues in the on state, complementary to the leader
election glues.

box, allow for communication between tiles in the shell and allow for cooperative binding of831

recognizer tiles (to be described), (2) shell slices, which cover 3 faces of the bounding box832

(aside from the tiles that are part of the first slice of the bounding box) and are removed after833

each slice of the bounding box is encoded, and (3) a cap, which covers the remaining face834

and allows for the encoding process to sense when it has completed the decoding process.835

3.2.1.1 Shell Base Formation836

The growth of the shell base is the first step of process and is initialized from the encoding837

corner gadget; cooperative growth of shell base tiles begins along the xz plane, demonstrated838

in Figure 16. This growth is initiated by the tile of the encoding gadget in the (0, −1, 0)839

location, which activates glues on its +x and +z faces leading to base tiles being able to840

cooperatively bind with the encoding corner gadget and the bounding box. Once bound to841

the shape, they activate glues similar to the encoding gadget to continue the binding until842

no feasible binding sites remain.843

Figure 16 (Left) The encoding corner gadget (black) binding to the leader corner. Purple tiles
are deconstruction shell base tiles whose growth is initiated after binding of the encoding corner
gadget to the bounding box. Red tiles indicate the bounding box, comprised of both filler tiles and
shape tiles. (Right) After initial binding of the encoding corner gadget to the elected corner, glues
are deactivated in order to allow for the encoding process to access all voxels in the first slice of the
bounding box

3.2.1.2 Shell Slice Formation844

To ensure the shell is complete before the remainder of the encoding process proceeds, the845

shell growth process proceeds away from the origin in the +z direction only after shell slice846



A. Alseth, D. Hader, and M. J. Patitz XX:23

tiles have entirely surrounded an xy plane of the bounding box. Each shell slice which grows847

is only a single tile wide. The growth of the first shell slice tile is enabled by the activation of848

a strength 1 glue on the encoding corner gadget on the tile in the (−1, −1, 0) location along849

its +z face, and with the adjacent shell base tile. We note that this growth is initiated at850

the same time as the shell base tiles, however will not begin until a shell base tile is bound851

to the bounding box in the appropriate location. Cooperative binding sites between the852

growing shell slice and the face of the bounding box allow for shell tiles to be placed in the853

+y direction until reaching the edge of the bounding box, as shown in Figure 17. A shell854

detector gadget allows for the shell slice tiles to sense they have reached an edge between two855

faces of the bounding box. For the growth of shell slice tiles to continue in the +x direction856

along the adjacent face, a tile must be placed on the +y face of the most recently placed857

shell slice tile - the binding of the shell detector gadget to the slice tile and a tile of the858

bounding box activates a strength 2 glue, allowing a second type of slice tile to bind which859

contains a complementary strength 2 glue, exposing strength 1 glues along all faces adjacent860

to tile face containing the strength 2 glue.861

Shell growth continues until similarly reaching the edge in the +x direction, where a shell862

detector gadget binds and causes the prior process to be repeated. Growth of shell slice tiles863

then continues in the −y direction along the face of the bounding box until overlapping with864

the shell base tiles; when a shell slice tile binds to a shell base tile, a message returns to the865

shell slice tile which initiated the growth of the current slice. Upon sensing this message,866

a strength 1 glue is activated on the face of shell tile which initiated growth of the current867

shell slice layer in the +z direction. The shell growth process continues until reaching the868

exterior most slice of the bounding box and cooperative growth is no longer possible.869

Figure 17 Shell slice tiles (fuchsia) grow along the edge of the bounding box. Growth in the +y

direction is initiated from the encoding corner gadget, and continues until reaching the edge of the
bounding box. Green tiles are a shell detector gadget, allowing for the shell tiles to sense the edge of
the bounding box and activate a strength 2 glue, causing a shell tile with a complementary glue to
extend into the +y direction

3.2.1.3 Shell Cap Formation870

At this point, a 4-tile capping gadget binds to an exposed, unique strength 1 glue exposed on871

the +z face of outermost slice tile and either a gf or gx glue on the bounding box (Figure 19).872

We note that this unique glue is activated alongside the shell slice growth glue, however873

geometric hindrances prevent the capping gadget from binding at any point but the edge of874

the bounding prism. This gadget, similar to the shell detector gadget, causes a strength 2875

glue to be activated on the outward-most shell slice tile to place a capping tile. This allows876

for a final set of capping tiles to enclose the remainder of the bounding prism; once the877

capping tiles complete the shell, a message is sent back to the encoding corner gadget that878

DNA28



XX:24 Universal Shape Replication Via Self-Assembly With Signal-Passing Tiles

Figure 18 Growth in the +x direction is no longer possible by the shell tiles (fuchsia), and the
shell growth duple (green) binds, allowing for shell tiles to continue growth

the encoding process can begin (Figure 20). The encoding process begins with a signal to879

deactivate the glues which bind the tiles which provided geometric guidance to the encoding880

corner gadget and activating a new strength 1 glue, d⊕,0.881

Figure 19 4-tile capping gadget in green binding to exposed shell tiles after all shell slice tiles
have been added to the bounding box.

Figure 20 Capping layer fully added to the deconstruction shell

3.2.2 Encoding Assembly via Bounding Box Deconstruction882

With the deconstruction shell created around the bounding box, we are now able to begin883

the process of building the encoding structure (ϕ) by deconstruction. Before continuing884

into the details of the encoding process, we provide a description of how the information885

provided by the location of tiles in a bounding box is encoded into binary values. Beginning886

with the origin point (0, 0, 0), we read the tile type information for each tile in the first row887

sequentially by incrementing the x-coordinate; for example, the second tile read is in the888

voxel with coordinates (1, 0, 0). Once all tiles in the current row have been read, we jump to889

the next row up. For example, in a 3 × 4 × 5 (x × y × z) bounding box shown by Figure 21,890

the final location in the first layer is (2, 0, 0). The next tile encoded is at coordinates (2, 1, 0).891

We then encode tiles heading towards the origin; the next voxel encoded in our example892

encoding would be (1, 1, 0). Upon arriving at the coordinate (0, 1, 0) (the last of the row893



A. Alseth, D. Hader, and M. J. Patitz XX:25

moving in this direction) we jump to the next row up, then encoding (0, 2, 0). By this process894

of visiting every tile in a slice in a ‘zig-zag’ pattern, we are able to encode the information895

regarding any slice of a bounding box sequentially.896

Figure 21 (Right) An example 3 × 4 × 5 shape, (Left) The first two rows of its encoding assembly.
The first (closest) row encodes the direction followed for each row of a slice, and the second row
encodes the presence of a shape tile or filler tile in each location. Yellow tiles represent ‘0’, red tiles
represent ‘1’. Shape tiles and ‘+’ direction growth are encoded as 0, fill tiles and ‘-’ are encoded as 1.
The encodings of additional slices only need a single row each, since the growth direction is shared
across rows of consecutive slices.

The very first row of the encoding subassembly contains additional information regarding897

the direction of the growth in our zig-zag pattern, and as a byproduct we also are able to898

easily retrieve the width of the rows of tiles. We compare the x values in the coordinates899

(x, y, z) between the first tile of a row and the last tile of a row by subtracting the x value900

between the two such that ∆x = xlast − xfirst. If a tile is contained in a row where ∆x > 0901

we denote this growth in the positive (‘+’) direction. Alternatively, if ∆x < 0 we denote902

this growth in the negative (‘-’) direction. We encode ‘+’ direction growth as a ‘0’, and ‘-’903

direction growth as a ‘1’. For example, in Figure 21, the first row begins growth at tile 1, the904

origin (0, 0, 0) and ends at (2, 0, 0), leading to ∆x = 2 − 0 = 2. In contrast, the second row905

begins at (2, 1, 0) and ends at (0, 1, 0), leading to ∆x = 0 − 2 = −2. We can see that the906

direction tiles placed in front of row 1 are encoded as 0, and encoded as 1 for row 2. All907

further slices only add a single tile for each voxel, as the direction for all tiles which have908

the same x, y value in their tuple (x, y, z) is the same (e.g., the tile in (1, 0, 0) which is the909

second tile placed in the first slice; the tile in (1, 0, 1) is the second tile placed in the second910

slice).911

For simplicity, the differentiation between shape and fill tiles is excluded in remaining912

figures in this section.913

3.2.2.1 First Slice Deconstruction914

To encode the information contained in the first slice of the bounding box, one of four915

recognizer tiles, rec0 = {0⊕
0 , 1⊕

0 , 0⊖
0 , 1⊖

0 }, cooperatively bind to a tile in the bounding box916

and the corner gadget (or the tiles added to the corner gadget, as will be shown shortly).917

The recognizer tiles detect either a fill tile with glue gf or a shape tile if the glue is of type918

gx. We note that the activation of the d⊕,0 glue on the encoding corner gadget allows for919

DNA28



XX:26 Universal Shape Replication Via Self-Assembly With Signal-Passing Tiles

only two possible tiles to bind to the origin location. 0⊕
0 tiles start with active d∗

⊕,0 and g∗
f920

glues on adjacent edges, 1⊕
0 tiles start with active d∗

⊕,0 and g∗
x glues on adjacent edges. The921

two remaining tile types are utilized for ‘-’ direction growth. The rec0 tiles contain glues922

which allow for specific growth patterns unique to the first slice; the recognizer tiles for the923

remaining slices are demonstrated in Section 3.2.2.2.924

Figure 22 Binding of the first recognizer tile causes additional signals which initiate growth of
tiles on the encoding corner gadget

After this binding occurs, 2 sets of signals are activated. First, the binding with the925

encoding corner gadget causes the activation of a strength 2 glue on the encoding corner926

gadget which allows for the growth of an additional layer of tiles in the −z direction adjacent927

to the encoding gadget, shown in Figure 22. Secondly, signals are sent to the face of rec0 tile928

opposite the bounding prism which allows for growth of two messenger tiles; a strength 1929

glue is activated on the −y face of the outermost tile (Figure 23). Messenger tiles contain930

glues which allow for the recognizer tiles to pass information regarding the direction of931

growth and the tile type of the shape voxel which they are adjacent to. This, along with932

activation of glues from the encoding corner gadget itself allows for cooperative growth of933

a path along the edge of the encoding corner gadget (Figure 24). Once the growth of tiles934

reach the tile of the encoding corner gadget located at (−1, −1, −1), cooperative growth935

halts. An encoding detector gadget (green) is able to bind to the glue on the encoding corner936

gadget and the outermost encoding tiles placed due to cooperative growth. This binding937

of the messenger tile with the encoding detector gadget causes the activation of a strength938

2 glue which allows for binding with the first tile of the encoding shape along the −x axis939

(this tile ends up becoming the nucleation site for decoding as well). Once the first tile of the940

encoding structure is added, additional tiles cooperatively bind to the tiles of the encoding941

structure and the shell slice tiles (but not the shell cap tile). This growth is visualized in942

Figure 25.943

After the encoding structure tile attaches to the encoding corner gadget, the first tile944

of the encoding structure exposes a strength 2 glue along its −z face, allowing for binding945

of a messenger tile which redirects growth in the +y direction. Three more tiles are added946

in succession - a helper tile with a strength 2 glue to allow for growth in the +y axis, a947

directionality encoding tile and a 0/1 encoding tile. The three tiles are placed in this order,948

growing in the +z direction as pictured in Figure 26. We have now encoded the information949

of the tile type which inhabits (0, 0, 0), along with the direction of growth. Once the 0/1950

encoding tile and the directionality encoding tile bind to the encoding structure, a message951



A. Alseth, D. Hader, and M. J. Patitz XX:27

Figure 23 Two messenger tiles, uniquely mapped to the activation of rec0 tiles allow for growth
to extend out past the tiles of the encoding corner gadget for purposes of cooperative growth. Note
that strength 1 glues are activated on 4 faces of the outermost yellow tile, as we cannot guarantee in
which rotation the tile will bind

Figure 24 (left) Enabled by the outwards growth of the recognizer tiles shown in Figure 23, tiles
are able to cooperatively grow outwards. (right) An encoding detector gadget (green) can then
attach to exposed glues from the recognizer tile growth and the encoding corner gadget, allowing for
both the encoding corner gadget and recognizer tiles to ‘sense’ that we have reached the outermost
edge

Figure 25 (Left) The first tile of the encoding structure (blue) is bound to the encoding corner
gadget, (Right) cooperative growth of tiles with the first row of shell tiles

DNA28



XX:28 Universal Shape Replication Via Self-Assembly With Signal-Passing Tiles

is passed backwards through the messenger tiles towards the recognizer tile, deactivating952

glues and turning into size 1 junk (i.e., dissolving the tiles) as the message propagates along953

the edge of the encoding corner gadget. The purpose of deactivation is to allow for reuse of954

the same path along the encoding corner gadget. This leaves only the tiles on the encoding955

structure, and the first messenger tile which attached to the recognizer. Upon reaching the956

recognizer tile, it exposes a glue in the −y axis to signal to the encoding corner gadget that957

this recognizer has successfully encoded its adjacent voxel. After binding with this glue,958

the encoding corner gadget signals for the addition of two tiles in the +x direction (using959

glues on the shell tiles of the xz plane for cooperation) which activate the d⊕,0 glue in the960

+y direction, allowing for the next recognizer tile to be placed. The prior process is then961

repeated, which then creates a series of message tiles to grow back to the encoding structure962

(Figure 27), using many of the same voxel locations. Additionally, an r glue is activated on963

the recognizer tile’s direction of growth (in this case, +x) in order to allow for recognizer964

tiles to detect when they need to activate d⊕,0 or d⊖,0 glues.965

Figure 26 (left) A messenger tile binds to the first row of the encoding structure, activating a
strength 2 glue to allow for cooperative placement of the encoded direction and tile type. (right)
the first tile placed on the encoding structure is an encoding of direction, and the second is the tile
encoding the type of the tile (i.e. shape or filler)

Figure 27 (Left) Resulting structure after deconstruction of messenger tiles, (Right) Addition of
next tile in shape reuses the edge alongside the corner gadget for cooperative growth

This process repeats until recognizer tiles have encoded all information of the first row of966

the shape. Once the final tile of the row has been placed, there exists no tile for which the967

tiles which extend the encoding gadget can bind to. Instead of cooperative binding allowing968

for the addition of a recognizer tile, a row completion gadget binds to the r glue exposed and969

either a fill or shape tile. The tile which bound to the row completion gadget activates a970

d⊖,0 glue which allows for cooperative binding with the row above after the r glue is bound,971

as shown in Figure 28. Since the first row is ‘+’ direction, the row growth then changes972

to ‘-’ direction . We note that 2 different versions of this row completion gadget exist to973

terminate ‘+’ and ‘-’ direction growth - the glues present are the same, but the glue locations974

are mirrored. Upon binding of the ‘+’ direction recognizer tile, the row completion gadget975



A. Alseth, D. Hader, and M. J. Patitz XX:29

detects the type of tile above the row completed by activating a glue in the +y direction976

and the −x direction. This allows for the binding of a row detector gadget if an additional977

row needs to be encoded. We will describe the case where the row detector gadget is unable978

to bind shortly. If the row completion gadget senses an additional row due to the binding979

of a row detector gadget, the r glue holding the row completion gadget to the direction ‘0’980

tile then deactivates, leaving it free to dissolve. Message tiles mapped to the ‘-’ direction981

recognizer tiles (teal) allow for expanding of the encoding structure similar to the first row982

and ‘+’ direction recognizer tiles; a recognizer tile binds to a tile on the bounding box,983

messenger tiles allow for the growth of a path of tiles along the edge of the encoding gadget984

and then extend the encoding gadget and encode both the direction of growth and tile type.985

Figure 29 demonstrates this process, along with cooperative growth on top of the prior row.986

Figure 28 (Left) Row completion gadget (green) binds to supertile upon completion of the
encoding of the first row. Row detector gadget (white) indicates to the detector gadget that an
additional row needs to be encoded. (Right) Signals allow for growth to continue with a recognizer
tile of direction ‘1’.

Figure 29 (Left) Growth of direction ‘1’ messenger tiles directly mimics that of direction ‘0’.
(Right) Direction ‘1’ tile recognition occurs in the opposite direction

At some point, a row completion gadget will bind to a location where there exists no987

row above the previously encoded row. This condition indicates that the slice has been988

completely encoded. To detect this situation the row completion gadget has a glue which989

allows for cooperative binding of a slice completion gadget only if the topmost tile of the990

gadget is exposed; this only occurs in the situation illustrated in Figure 30. After binding991

of the slice completion gadget, the gadget activates a glue in the +z direction that, when992

binding to complementary glues on the shell tiles, sends messages which dissolve (1) the shell993

in the next slice, (2) the recognizer tiles of the current slice, and (3) the slice of the shape994

itself.995

DNA28



XX:30 Universal Shape Replication Via Self-Assembly With Signal-Passing Tiles

Figure 30 (Left) The row completion gadget has its topmost tile above the topmost row of the
current slice, allowing for the slice completion gadget (white) to bind to the row completion gadget
to indicate slice has been fully encoded. (Right) Beginning state of next slice growth after all tiles
involved in encoding the current slice are turned into size 1 junk.

3.2.2.2 Remaining Slice Deconstruction and Termination996

After the encoding of the first slice has completed, we must then deconstruct the remaining997

slices with similar, but slightly modified dynamics. This is due primarily to the fact that the998

encoding structure now contains directionality information, which remains constant across999

slices. Instead of growing along the edge of the encoding corner gadget and the encoding1000

structure, messenger tiles grow ‘over’ themselves - they stay in the same xy plane.1001

We add a new set of tiles rec = {0⊕, 1⊕, 0⊖, 1⊖} which allows for modified message tile1002

growth in order to encode voxel information on the encoding structure. We note that the1003

base fill tiles expose glues complementary to these tile types to allow for cooperative binding1004

of rec tiles of type d∗
⊕ (as they are responsible for first row growth, which is in the ‘+’1005

direction). This allows for tiles of type 0⊕ or 1⊕ to bind to the first row, depending upon1006

the tile in the slice (i.e. if its a shape or filler tile). The growth dynamics of the messenger1007

tiles differ significantly from the messenger tiles which are mapped to the rec0 tiles. As1008

demonstrated in Figure 31, for ‘+’ growth recognizer tiles a strength 2 glue activates to bind1009

a messenger tile to the recognizer tile in the +y direction. Strength 1 glues are activated1010

on all faces of this messenger tile to allow for cooperative binding of additional messenger1011

tiles to continue in the −x axis towards the encoding structure. Once the messenger tile can1012

no longer cooperatively bind to the encoding corner gadget, a messenger detector gadget1013

is able to attach to the messenger tile and the encoding corner gadget, activating signals1014

allowing the growth of messenger tiles to place a tile encoding on the encoding structure.1015

After placement of this encoding tile on the encoding structure, a message is returned to1016

the recognizer tile indicating that the tile has been encoded, allowing for messenger tiles1017

to dissolve and signal to the base tile that encoding is complete, activating a glue to have1018

its neighbor turn on a d∗
⊕ glue. This process continues across the first row, as shown in1019

Figure 32.1020

At the end of the growth of a row, we use the alternate form of the row completion gadget1021

(i.e., glues present on +x face of gadget, instead of −x) utilized in Section 3.2.2.1 to sense1022

the completion of a row by binding to the last recognizer tile and the bounding prism. This1023

causes the recognizer tile which bound to the row completion gadget to activate a d⊖ glue in1024

the +y axis, allowing for the reversal of growth direction (Figure 33).1025

The ‘-’ direction recognizer tile is able to utilize only cooperative binding to place its1026

messenger tiles (instead of relying on a strength 2 glue to grow in the +y axis first) in the −x1027

axis, cooperatively growing along the top of the prior row. This process continues until the1028

binding of a messenger detection gadget, resulting in a placement of a tile on the encoding1029



A. Alseth, D. Hader, and M. J. Patitz XX:31

Figure 31 (Left) Direction ‘0’ growth requires the ability to grow over previously placed tiles.
(Right) Similar to the growth of the encoding structure, we require a messenger detection gadget
(green) to enable the messenger tiles to sense when they have grown to the edge of the current
encoding.

Figure 32 The second recognizer tile binds to bounding box, causing growth in the −x axis to
place an encoding tile on the encoding structure.

Figure 33 (Left) After the last tile in the row has been successfully encoded, a row completion
gadget (green) is able to bind and enable the activation of a d⊖ glue. (Right) The first negative
direction tile (teal) binds to the top of the last recognizer tile of the prior row.

DNA28



XX:32 Universal Shape Replication Via Self-Assembly With Signal-Passing Tiles

structure (Figure 34).1030

Figure 34 After the detection gadget binds, the negative direction tile messengers (teal) place a
tile on the encoding structure.

Once a row completion gadget binds to the final recognizer tile along with a slice1031

completion gadget (see Figure 35), the tiles which comprise the current slice of the bounding1032

prism, its recognizer tiles and the shell of the next slice are all dissolved. We note an edge1033

case where a voxel may be missing a tile from the bounding prism generated (see Figure 36).1034

This case arises in situations where there exists either some width 1 cavity (similar to the1035

bent cavity in Figure 2) and the binding of a filler tile blocks diffusion for other filler tiles, or1036

an in enclosed cavity which is unreachable by filler tiles before deconstruction. Since this1037

encoding tileset also includes the tiles which generate the bounding prism, there exist filler1038

tiles present to be attach into such a location. As cooperative binding is required between a1039

face of the bounding prism and a face of either a base tile or recognizer tile, the encoding1040

process will not progress until a filler tile attaches to that location and a gf glue is exposed1041

(Figure 36).1042

Figure 35 Slice completion gadget (white) binds after row completion gadget binds to the final
row of a slice, identical to the process for first slice.

Once this process reaches the final slice, we end up with an exposed set of tiles in the1043

bounding prism which are able to be encoded utilizing the same mechanics as any other1044

intermediate slice. The key difference is that instead of slice shell tiles being exposed in the1045

+z axis, the next set of exposed tile are those of the capping layer. The encoding process1046

proceeds as normal, including the binding of the row completion gadget and slice completion1047

gadget as seen in Figure 37. After the capping tiles bind with the row completion gadget1048

indicating that the final slice has been encoded, in addition to the slice, messenger and1049

recognizer tiles dissolving into size 1 junk, a cascade of signals is sent outwards from the1050

capping tiles to dissolve the remainder of tiles involved in the encoding process. This includes1051

the base, remaining slice tiles, capping tiles, the encoding corner gadget, and the encoding1052



A. Alseth, D. Hader, and M. J. Patitz XX:33

Figure 36 (Left) A tile missing from the bounding prism undergoing the encoding process,
highlighted by a red box. We note that this exact void location would not be possible in a valid
bounding prism, however it is presented for explanatory value. (Right) Encoding halts until a filler
tile binds in the void, ensuring that encoding process does not skip a voxel.

structure upon which messenger tiles placed the encoding of the shape. Upon receiving the1053

dissolve signal, we note that the encoding corner gadget sends a signal to the first tile in the1054

encoding structure which encodes a voxel (i.e., it is set back from the direction row of the1055

encoding structure). The complement of this glue is found on all tiles in the encoding of1056

the first slice, however only this outermost tile has this glue exposed. This signal causes a1057

strength 2 g0 glue to be activated, allowing for a location for the decoding process to begin.1058

Figure 37 (Left) The final slice after encoding has completed - the binding of the row completion
and slice completion gadgets (green and white, respectively) activate glues to signal to the capping
layer that encoding is complete. (Right) At the end of the dissolution of all “helper” tiles, all that
remains is the rectangular prism of depth 1, with a glue encoding the location of each voxel of the
input shape and a strength 2 glue indicating the first tile in that encoding, plus a set of disconnected
junk tiles.

Beginning with the creation of a bounding box and leader election around a uniformly1059

coated shape s in Section 3.1, at the end of the assembly sequence for the tileset E we have1060

produced a terminal supertile ϕ which represents an encoding of the the shape using the1061

encoding function fe, with a maximum junk size of 4. The STAMR system ES = (E, ΣS , τ = 2)1062

finitely completes, as each of the sub-constructions to carry out the encoding fe require a1063

finite number of steps (and thus, finite tile count) to complete. The final property which1064

must hold is that regardless of the number of distinct shapes of input assemblies, the shapes1065

of all will be correctly replicated. By our construction, there are never exposed glues on the1066

surfaces of any pair of assemblies that each contain an input assembly that would allow them1067

to bind to each other. Since junk assemblies produced by any assembly sequence are also1068

DNA28



XX:34 Universal Shape Replication Via Self-Assembly With Signal-Passing Tiles

unable to negatively interact with other assemblies, a system whose input assemblies have1069

multiple shapes will behave simply as the union of individual systems which each have one1070

input assembly shape, creating terminal assemblies of all of (and only) the correct shapes.1071

This proves Lemma 14.1072

3.3 Shape Decoding1073

We now describe the tileset D which functions as a universal shape decoder. The STAMR
1074

system for shape decoding is defined as DΦ = {D, ΣΦ, τ = 2}. ΣΦ includes infinite copies of1075

the tiles of D and the set of encoding structures generated from ES , Φ = {ϕ1, . . . , ϕn}. The1076

shape decoding process and tile types required can be broken into 3 main sets of tiles. We1077

describe the process for a single ϕ ∈ Φ and note that the process proceeds identically for1078

each encoding simultaneously. First, base tiles initiate the decoding process by binding to ϕ1079

at a unique starting location. They then grow a subassembly outward from the encoding1080

assembly which is guaranteed to be connected to it by at least strength 2 throughout the1081

decoding process. Second, we construct the shape and filler tiles (which are unique to1082

the decoder’s tileset, and separate from the similarly named tile types of the encoder) and1083

describe how encoded information allows for an assembly sequence of shape tiles guaranteed1084

to be connected to their neighbors in the decoded shape. Third, we have a set of tiles called1085

decoder tiles which read the encoding and allow for the sequential placement of shape and1086

filler tiles based on their location in the encoding. Similar to the concerns regarding the1087

shape becoming disconnected and splitting into multiple disconnected assemblies in the1088

deconstruction process, decoding must proceed in a manner that allows for the growth of a1089

slice which guarantees strength 2 connection to the encoding structure and growing shape,1090

and also prevents a filler tile from becoming ‘trapped’ in an enclosed volume. The prevention1091

of filler tiles becoming ‘trapped’ in an enclosed volume drives a significant portion of the1092

complexity of this process when combined with the need for strength 2 attachment of all1093

shape tiles at steps in an assembly sequence.1094

In the tileset D, we use a decoding process which places tiles in the exact same order as1095

the encoding process built the encoding assembly ϕ as presented in Section 3.2.2. Two pieces1096

of information are explicitly encoded in ϕ. The bulk of the tiles in the encoding correspond1097

to identifying if a location in a shape corresponds to empty space, or a tile of the shape. The1098

second piece of information, provided in the first row of the encoding, is the the direction of1099

growth; this can be utilized in two manners. First, the direction of growth provides to the1100

system the types of tiles to be utilized to reach the point encoded, as growth processes vary1101

significantly between ‘+’ direction growth (encoded as a 0) and ‘-’ direction growth (encoded1102

as a ‘1’). Secondly, when the direction of growth encoded changes from 0 to 1 or 1 to 0,1103

this indicates to the system when a tile is to be placed into a new row. This information is1104

required to ensure that we can grow a slice such that each tile is guaranteed to be connected1105

to its neighbor, but also so tile faces are assigned with the appropriate glues. We note that1106

the tiles in this section obey the careful dissolving property in Section 3.1.3.1107

We first present the details of tile attachment.1108

3.3.1 Fill and Shape Tile Attachment Details1109

In this section, we demonstrate a template for tiles which allows for the decoding process to1110

be carried out, allowing for connections between all shape tiles and their neighbors within a1111

slice. Additionally, we provide examples of gadgets which allow for the growth of consecutive1112

slices of a shape encoding without causing filler tiles (which are not part of the final shape,1113



A. Alseth, D. Hader, and M. J. Patitz XX:35

but may be temporarily required to ensure a strength 2 connection between portions of1114

shapes where a cut may exist in the binding graph of the partially decoded shape) to be1115

stuck in an enclosed volume of a shape. At a high level, these tiles ensure three properties:1116

(1) each tile is, at a minimum, connected to its neighbor in an encoding, (2) shape tiles are1117

connected to all adjacent shape tiles with strength 2, and (3) before any tile is added to a1118

new slice, if the tile in the same x, y coordinates of the prior slice is a filler tile, that filler tile1119

must be removed before placement of the next tile occurs. While we demonstrate how these1120

properties are carried out in the current section, we prove their correctness in Section 3.3.8.1121

3.3.1.1 Tile Type Identification1122

We demonstrate the filler tiles required to carry out the decoding of a shape, based upon the1123

requirements for incrementally building a slice utilizing the ‘zig-zag’ process. First, each filler1124

tile has 6 variants to handle growth along a row (also called ‘normal row growth’) and the1125

change of a row for both directions of growth (see Figure 38). The two tiles of normal row1126

growth (either +x or −x direction) are typically used for the majority of growth. There exist1127

two tiles which either grow in the +y direction or turn +y direction growth into +x/ − x1128

direction growth; this leads to four total tiles when considering both directions of growth.1129

Shape tiles have 12 variants to also account for the type of tile of its neighbor in the previous1130

slice. See Figure 39 for examples of the signals necessary on shape tiles which must bind to1131

a shape tile in the prior slice. To determine which of these 18 possible tile variants is utilized1132

in any given voxel, the assembly sequence of the tileset D takes information from a variety1133

of sources - direction tiles, decoding tiles, direction change detectors, and neighbor detection1134

gadgets.1135

Figure 38 An example of normal row growth and direction change tiles used by the decoding
process to build a slice - these tile types map to both shape and fill tiles. (1) and (4) are standard
row growth tiles for ‘+’ and ‘-’ direction growth, respectively. (2) and (5) are row end tiles for ‘+’
and ‘-’ direction growth; they open cooperative binding sites which allow for tiles (3) and (6) to
bind and change the direction of growth. Signal activation arrows demonstrate the order in which
faces of shape tiles are determined to be either bound to a neighboring shape tile or have a fill tile
adjacent to the face.

We utilize Figure 40 to analyze the tile types which contribute information to the1136

determination of the final tile type placed at any given voxel, aside from neighbor detection1137

gadgets. The direction tile provides three pieces of information - the location of the voxel,1138

DNA28



XX:36 Universal Shape Replication Via Self-Assembly With Signal-Passing Tiles

Figure 39 An example of shape tiles which have shape tiles as neighbors in the prior slice. Note
that signals must pass through the face adjacent to the neighbor in the prior slice before binding to
the next tile in the slice.

and the tile growth direction (‘+’ or ‘-’ growth, defined by 0 or 1 glues, respectively), and1139

the growth direction of the prior tile placed. The location of the voxel is simply tracked by1140

the location of the direction tile which has active glues allowing for binding with decoding1141

tiles (tiles which bind to the locations encoding shape information on the original encoding1142

structure), and the direction of growth is defined by the value of the first row of the encoding1143

(see Figure 21 for additional details on growth direction). Each direction tile is either placed1144

directly on top of the first row encoding the direction of growth (as in Figure 40), or is placed1145

due to cooperative binding which passes the directional information among directional tiles1146

with the same x coordinate (i.e., tiles grow in the same direction as their neighbor in prior1147

slices). Additionally, the direction tile determines whether the prior direction tile was ‘+’1148

or ‘-’ growth direction by glue bindings. The direction change detectors bind to the current1149

direction tile and the direction tile for the succeeding voxel - this, along with being bound to1150

the prior direction tile allows for the current direction tile to expose a glue which encodes for1151

both the direction of growth and determine if the tile is at the beginning or end of a row. If1152

the direction tiles of either adjacent tile contain a growth direction different from that of the1153

current direction tile, the current tile is at the end or beginning of a row. The decoding tiles1154

provide the information as to whether the tile in the current encoding of voxel location is1155

either a shape of fill tile. The binding of a decoding tile to the encoding supertile is enabled1156

by cooperative binding with the direction tile. All the information gathered by both the1157

direction tile and the direction change detectors map to the activation of one of six possible1158

glues, corresponding to the six tiles in Figure 38. The decoding tile placed now contains the1159

information regarding the growth direction of the tile and whether the tile is a shape or a1160

filler tile.1161

Shape tiles take an additional piece of information - whether or not the tile in the same1162

(x, y) coordinate in the prior slice (i.e., if (x, y, z) is the location of current tile to be placed,1163

its neighbor in the prior slice is (x, y, z − 1)) is a filler tile or shape tile. A shape tile cannot1164

be immediately connected to a filler tile in the prior slice and remain in place, as that filler1165

tile must be removed to prevent it being trapped in an enclosed cavity. This information1166

cannot be learned at the initial binding location shown in Figure 40. As such, the decoding1167

tiles expose glues to enable tile growth to the voxel of the tile. This final piece of information1168

is determined by the binding of one of three neighbor detection gadgets.1169

When the growth of the decoding tiles reaches the location for placement of a tile (the1170

process by which this occurs is detailed in following sections), the neighbor detection gadget1171

cooperatively binds with the decoding tiles and the neighbor of the tile to be placed in the1172

current location. If a shape tile is detected, the gadget detaches and activates a glue to1173



A. Alseth, D. Hader, and M. J. Patitz XX:37

Figure 40 An example of the information which is gathered from the encoding structure. The
directional tile gathers information regarding the growth type of tile location encoded. The direction
change detector gadget (white) which detects that growth type ‘0’ shifts in growth type ‘1’, indicating
a change of row and necessitating a direction change tile. The decoder tile, once glues are available
to cooperatively bind to the encoding structure and the directional tile, determines that the tile in
the current location is a shape tile

Figure 41 Continuation of the example in Figure 40. After the decoding tile has determined all
information regarding the tile to be placed from the encoding (a shape tile which is at the end of a
row), the decoding tile initiates growth of tiles which allow for the information regarding the tile
to reach its voxel - the additional red tiles grown from the encoding structure. The final piece of
information which dictates the type of tile to place is the tile type which is present in the slice prior.
A neighbor detection gadget (teal) is utilized to cooperatively bind to the decoding tile

DNA28



XX:38 Universal Shape Replication Via Self-Assembly With Signal-Passing Tiles

place a tile which requires that binding of the neighbor occurs before growth of the slice can1174

continue (Figure 39). If a fill tile is detected in the prior slice, we utilize a shape tile which1175

pre-encodes the information that face of the neighbor contains a gx glue, as the fill tile must1176

be removed before the shape tile can detect the glues on the fill tile (Figure 38). Additionally,1177

we initiate a process of guaranteeing removal of the fill tile that requires a duple be used1178

for the removal process. We also have a special neighbor detection gadget for the first slice,1179

where the neighbor tile is a backing tile (used to enable strength 2 connections between all1180

slices, it is described further in Section 3.3.3). Due to the neighbor detection gadget sensing1181

a backing tile, the shape tile to be placed will pre-encode the gx glue. The binding of the1182

neighbor detection gadget to a backing tile causes the growth of an additional backing tile.1183

3.3.1.2 Detecting Neighbors and Removing Fill Tiles1184

We present an example of the deconstruction process necessary for fill tile removal in the1185

decoding of a shape. The supertile described is a continuation of the examples in Figures 40, 41.1186

First, a fill tile neighbor detection gadget cooperatively binds to the decoding tiles growing1187

outward from the encoding and the fill tile of the prior slice (Figure 42).1188

Figure 42 The detector tile initiates the placement of a fill tile in the next voxel location. This
allows for cooperative binding of a neighbor detection gadget (teal) to the fill tile placed in the prior
slice

After this binding occurs, the fill detector gadget binds with strength 2 to the fill tile.1189

This binding additionally causes all the remaining glues on the fill tile to be set to the off1190

state; once this glue deactivation occurs, the 3-tile unit will detach from the growing supertile1191

and become junk (Figure 43). Detachment of the size-3 junk allows for cooperative binding1192

to place the tile encoded by the decoding tile such that it has not blocked the removal of1193

the fill tile in the prior location (Figure 44). As provided by the construction, a strength 21194

connection exists between any remaining tiles in the slice.1195

3.3.1.3 Slice Incorporation1196

We refer to the process by which tiles bind to their neighbors as slice incorporation; this1197

process occurs in a similar manner for both type fill and shape tiles, however shape tiles1198

may need to additionally bind to a neighbor in the prior slice. First, a tile binds to its1199

predecessor. This is enabled by the two starting active glues, as shown in Figure 38 by the1200

solid black squares. One glue is provided by the decoding tiles, and the other is provided by1201

the neighbor; these map uniquely to a single tile. Once binding occurs to the predecessor1202

and the tile is a shape tile and has a neighbor in the prior slice, it then binds to its neighbor1203

(Figure 39). At this point, growth can continue in the slice and a glue is exposed; the tiles1204



A. Alseth, D. Hader, and M. J. Patitz XX:39

Figure 43 After the fill detector gadget (teal) binds to the fill decoding with strength 2, this
causes the fill tile to detach from its slice. Once all glues on the fill tile have deactivated, the size-3
junk is able to detach from the supertile.

Figure 44 The new fill tile in the current slice is allowed to cooperatively bind once the fill
detector gadget junk detaches from the supertile.

is a shape tile, it exposes at s type glue, f type if it is a fill tile. The binding of this tiles1205

successor activates a glue in the +y direction. Once the +y direction glues bind, we then1206

pass a signal in the −y direction. As shown in both Figures 38 and 39, the +y/ − y face1207

between tiles which change rows utilizes two separate set of glues, as tile growth occurs in1208

the +y direction before signaling slice growth completion. Finally, once bound in the −y1209

direction we activate glues in the +z direction, allowing for growth of the next slice. In this1210

sequence of glue activation, we guarantee that the topmost row of a slice will be bound fully1211

to all neighbors in the slice before glues are activated allowing for new growth. As such, in1212

order for the first tile in a new slice to be placed, it must be connected with strength ≥ 2 to1213

the encoding structure via the topmost layer.1214

We note that with shape tiles, each tile contains the information to be connected to its1215

neighbors and expose surface glues in any exterior location or internal location adjacent1216

to fill tiles. These exterior glues can become active immediately, or be activated at some1217

later point by the action of some sort of gadget binding to the surface and causing signals1218

be passed through the entire structure. If the glues begin in the on state, we must take1219

care such that if we present a replicating system (per Theorem 13) that they do begin the1220

encoding process while decoding is taking place. For that reason, in this construction we1221

do not immediately activate the gx glues of an encoded shape. The shape resulting from1222

our tileset is terminal once all extraneous fill tiles and base tiles have detached from the1223

encoding. These shape tiles begin with strength 1 glues along all exterior edges of type ga;1224

these have no complement in either tileset involved in replication. However, we can define1225

an activation corner gadget which contains two g∗
a glues and is able to bind to the inactive1226

shape tiles. Upon binding of the activation corner gadget to the shape tile, glues bound to1227

DNA28



XX:40 Universal Shape Replication Via Self-Assembly With Signal-Passing Tiles

the activation corner gadget initiate a cascade of signaling to all other tiles in the shape1228

which deactivate ga glues and in their place activate gx glues1229

Having a process to connect the tiles in a slice together, we now present the remainder of1230

the tiles utilized to place shape tiles in the appropriate location and validate completion of1231

the encoded shape.1232

3.3.2 Base Creation1233

Before continuing, we first provide an example shape (and its encoding) which will be used1234

throughout the remainder of this section. Figure 45 demonstrates the encoding of the shape1235

provided in Figure 46. This shape and the encoding of the shape are used throughout the1236

section as an example.1237

Figure 45 Encoding of the initial shape. Red voxels expose ‘1’ glues on their surface, and yellow
indicate exposed ‘0’ glues. The first row indicates direction of growth for tiles in the same +z

column. The orientation of the axes for growth (identical to the orientation during encoding) is
defined as shown.

Figure 46 The shape which will be decoded from the encoding

We demonstrate the set of tiles which create a base, the initial set of tiles which, when1238

combined with an encoding of a shape, nucleate growth and serve as a foundation for the1239

remainder of the growth process. We note that this encoding in a rectangular plane is1240

convenient for our purposes (and prevents a massive increase in the number of tiles and1241

signals required), however this entire process could be completed with only ‘0’ and ‘1’ tiles1242

encoded in a line.1243

This encoding supertile begins with a strength 2 g0 glue exposed, allowing for the tile t01244

to bind (Figure 47). Once t0 is bound, it begins the process of growing the base by activating1245

signals which cause uniquely mapped tiles to bind with the purpose of finding the width of1246

the shape, demonstrated in Figure 48.1247

We first determine the width of the shape. Since each row alternates direction, we can1248

utilize this information to construct a set of tiles which are able to identify the width of1249

the base required for decoding. A set of counting tiles are able to add tiles to the existing1250

supertile which define a base the width of the shape. This counting process operates by1251

cooperatively adding one tile to attach to the width-detection tiles. The first row is able to1252



A. Alseth, D. Hader, and M. J. Patitz XX:41

Figure 47 Initial binding of t0 to encoding supertile, with the second tile included (base tiles
indicated by blue)

Figure 48 Extending initial base tiles (blue) to begin reading the width of the shape.

utilize signals passed through the unique tiles which initiated growth to cause the addition of1253

at least a width-1 base (Figure 49). We note that the encoding will be guaranteed to contain1254

more than two tiles in any row due to the tiles added in the process of leader election. The1255

tile encoding the second location of the base then activates a strength 2 glue which allows1256

for the binding of a counting tile (Figure 50). This tile enables cooperative growth along the1257

edge of the currently exposed counting tiles.1258

Figure 49 The first counting tile extends the width of the base by 1 voxel. Since we have used
unique tiles up to the point, we are able to pass a message through to cause the addition of two
general base tiles.

Once the counting tiles reach the end of the existing growth, one of two possible counting1259

detectors is able to bind to the new growth of counting tiles and the encoding structure1260

(Figure 51). The two counting detectors have glues which sense either a ‘0’ direction tile or a1261

‘1’ direction tile. Since the initial row is of direction ‘0’, the counting process will be sent a1262

signal along the new growth to both extend the width of the base by 1 tile and dissolve the1263

prior placed counting detectors into size 1 junk in order to allow for the counting process to1264

repeat (Figure 52). Otherwise, if a direction ‘1’ tile is sensed, we have found the beginning1265

of the second row and can terminate the counting process. Once this counting process is1266

completed, we activate glues on the initial base tiles to cooperatively fill in the remainder of1267

DNA28



XX:42 Universal Shape Replication Via Self-Assembly With Signal-Passing Tiles

Figure 50 Newly placed tiles initiate a message which cause a strength 2 counting glue to be
exposed.

the tiles (Figure 53). The cooperative filling is determined to be complete by the binding1268

of a base completion gadget (Figure 54), returning a signal to t0 that causes another set of1269

signals to be propagated that enable the placement of a base tile in the +z direction.1270

Figure 51 Cooperative growth along blue base tiles allows for counting tiles (purple) to reach
the furthestmost tile. A duple (green) allows for the counting row to sense when it must extend the
base by an additional tile by cooperatively binding to both the furthest counting tile and a ‘0’ on
the encoding supertile. Messages are sent to extend both the base tiles counting the current base
width and to extend the width of the base by 1.

Figure 52 Once the counting row reaches the ‘1’ tiles, this indicates the base is of the correct
width. This is sensed by a counting duple (black) which cooperatively binds to both the counting
row and the ‘1’ glue.

3.3.3 Row 1 Tile Placement1271

Once the base is complete, a signal is sent to begin the decoding process of the first row.1272

Figure 55 demonstrates how this signal allows for a strength 2 glue to be exposed in the +y1273

axis, allowing for a base tile to generate cooperative binding on top of the first directional1274

tile. Unlike other directional tiles, the directional tile of first tile of the first row encodes1275



A. Alseth, D. Hader, and M. J. Patitz XX:43

Figure 53 After binding of the black counting duple, the counting tiles dissolve and a signal is
sent to begin cooperative growth of the remainder of the base adjacent to the encoding

Figure 54 Base completion duple (white) allows for the base to detect when tiles have extended
the base along the entire edge of the initial encoding supertile. A message returns to the initial tiles
placed once all tiles of the row adjacent to the encoding have been placed in the base.

the information that a row change tile is to be utilized, without the need for sensing the1276

directional tile prior (as there is no prior directional tile). Once the directional tile binds, it1277

then activates a glue allowing for the cooperative binding of a decoder tile that determines if1278

the origin tile is a shape or fill tile. Additionally, this binding causes a signal to be passed1279

backwards through the base tile most recently placed such that it initiates the growth of a1280

backing tile. Backing tiles serve two main purposes; first, to indicate to tiles of the first slice1281

that they are adjacent to an exterior edge, and any shape tile must encode exterior glues on1282

its −z face. Second, backing tiles allow for the tiles in the topmost row of a slice to bind1283

along their top edge with strength 2 connections. The process by which this second item1284

proceeds is outlined in Section 3.3.6.1285

Once the decoder tile determines which type is to be placed, a glue is exposed in the1286

+x direction to enable growth of the decoding tiles. Due to the current decoding tile being1287

the first tile of the row, we can guarantee that at this point a neighbor detection gadget1288

must bind to the recently placed backing tile and the decoding tile (Figure 56). This binding1289

of the neighbor detection gadget with the backing tile additionally causes the backing tile1290

to activate a glue allowing for cooperative binding of another backing tile with the base in1291

the +x direction. The decoding tile now contains all the information regarding the tile type1292

to place after binding with the neighbor detection gadget. A strength 2 glue allows for the1293

growth of an additional decoder tile (mapping to the tile type indicated in the encoding1294

assembly); this enables cooperative binding of the tile type mapped between itself and the1295

base tiles (Figure 57). After the base tile and decoded tile of the shape are connected with1296

strength 2, signals are sent back through the decoder tiles towards the directional tile which1297

initiated growth. Upon passing this signal to the decoder tile’s predecessor, all decoder tiles1298

not bound to the directional tile dissolve into size 1 junk (Figure 58). The decoder tile1299

adjacent to the directional tile activates a glue indicating for the next directional tile to be1300

placed, thus allowing for the placement of an additional decoding tile.1301

Tile additions continue also utilizing the direction change decoding demonstrated in1302

DNA28



XX:44 Universal Shape Replication Via Self-Assembly With Signal-Passing Tiles

Figure 55 The initial tile, once messages have been received that the base is complete, initiates a
signal which causes a base tile allow cooperative binding of the first directional tile. Additionally, a
glue initiating growth of the first backing tile is exposed in the +x direction

Figure 56 Once cooperative binding has occurred to dictate the decoding tile, glues are activated
on the +x face of the decoding tile, allowing for cooperative growth and binding of neighbor detection
tiles. A strength 2 glue is exposed upon binding with the neighbor decoding tile, allowing for a
decoding tile to be added which cooperatively places the tile encoded.

Figure 57 Once the row-1 tile binds to the base, it exposes a glue in the −z axis that allows for
the cooperative binding of the fill/shape tile encoded by the first location. Once cooperative binding
occurs, a second glue is activated which allows for a strength 2 connection between the shape/fill tile
most recently placed and its predecessor (in this case the base tile - the first row of which contains
glues and signals which allow for binding in this manner). Additionally, when the detection duple
binds to the backing tile, a signal is sent to activate glues in both the +x and +y directions which
allows for a second tile to bind

Figure 58 A message is passed backwards along the binding edges such that the direction tile
activates a glue which allows for the next directional tile to bind. Additionally, the decoding tiles
placed in support of the prior encoded location of the shape deactivate all glues and become junk to
allow for the next tile of the encoding to be placed utilizing the same path of voxels.



A. Alseth, D. Hader, and M. J. Patitz XX:45

Figure 59 Placement of encoded tiles continues, with decoding tiles re-utilizing the same set of
voxels to grow voxels further away from the origin.

Section 3.3.1, until the final tile of the row is reached. At this point growth continues by the1303

standard process of directional tiles allowing cooperative binding with the encoding structure,1304

however switched to direction ‘1’ growth. In order to enable the placement of encoding tiles1305

via direction ‘1’ growth, the backing tiles must be present in the new row to allow for binding1306

of neighbor detection gadgets. A backing growth detector (see Figure 60)binds to the most1307

recently placed backing tile and the base (or backing) tile in the row prior. Binding of the1308

backing growth detector allows for a strength 2 glue to be turned on to enable the growth of1309

a backing tile in the +y direction (Figure 61).1310

Figure 60 Backing growth detector (purple) binds to the outermost backing tile and the base to
signal to the backing tile to activate a strength 2 glue in the +y direction. Note that for following
rows, the backing growth detector will bind with two backing tiles

Figure 61 Binding of the next backing tile in order ready growth, allowing for binding of neighbor
detection tiles.

DNA28



XX:46 Universal Shape Replication Via Self-Assembly With Signal-Passing Tiles

3.3.4 Row 2n Tile Placement1311

For each even numbered row, tiles grow in the ‘-’ direction; that is, the first tile in the some1312

row 2n is placed above the last tile of the prior row (2n - 1) For row 0 growth, each additional1313

tile placed took us further away from the origin point (e.g., incrementing the x value in the1314

(x, y, z) position tuple). In the case of ‘-’ direction growth, tiles of the slice are placed at1315

the furthest-most x value of the slice and decrement to 0. While the decoding tiles of the1316

first row bind initially to decoding tiles, the most recently placed tile and directional tiles,1317

the decoding tiles of ‘-’ direction growth cooperatively bind with the prior decoding tile and1318

a base tile. Growth occurs in two cases; in the case of the first tile of a row of direction 11319

growth, tiles bind until they reach the furthest-most base tile. When reaching the outermost1320

base tile, a direction ‘1’ detection gadget binds with the outermost base tile and the furthest1321

placed decoding tile (Figure 62). At this point, a glue is activated on the decoding tile’s1322

+y face, allowing for cooperative growth to continue. This allows for cooperative growth1323

along the previously placed tiles until no longer possible, at which point a neighbor detection1324

gadget is able to bind to the decoding tile and the neighbor tile (in this case a backing tile,1325

see Figure 63).1326

Figure 62 Cooperative binding for direction ‘1’ tile growth of the first tile in row 2 extends to
the edge of the base. A direction ‘1’ detection gadget (green) attaches to the base and the growing
row, indicating the edge has been reached. Once the direction ‘1’ detection gadget is bound, a glue
activates on the +y face of the tile, allowing for cooperative growth in the +y direction on the
currently grown structure.

Figure 63 The binding of the neighbor detection gadget allows for a strength 2 glue to activate
in the +y direction, allowing for a tile with glues mapping to the decoding tile type (in this case,
a shape tile which has a gx glue encoded on its back side) to cooperatively bind to the prior tile
placed.

Similarly, this allows for both the placement of the encoded tile and the extension of the1327

backing tiles; upon the placement of the encoded tiles, a signal is sent to dissolve all decoding1328

tiles not involved in growth in the +y direction into size 1 junk. The next directional tile is1329

added, allowing for the binding of the next decoding tile and the growth to place the tile1330

dictated by the encoding structure. To sense when the growth of the decoding tiles in the1331

+x direction has reached its furthest-most point, the remaining decoding tile which originally1332

redirected growth in the +y direction enables a glue similar to that present on the direction1333

‘1’ detector gadget. We note this does not cause interactions between multiple encoding1334



A. Alseth, D. Hader, and M. J. Patitz XX:47

processes going on in parallel, as the presence of the base tiles and the directional row offset1335

any possible growing decoding tile (Figure 64). Once the neighbor detector gadget binds, it1336

grows in the +y direction and places its encoded tile (Figure 65). This repeats until all tiles1337

of the row have been added.1338

Figure 64 After binding of neighbor detection gadget, shape tiles are placed.

Figure 65 Mid-growth of the second tile in the encoding of row 2. Note that all but one horizontal
tiles are deactivated in direction ‘1’ growth, this is in order for collision to occur and correctly place
remaining tiles.

Figure 66 Neighbor detector gadget binds to the furthest-most placed decoding tile of the second
decoding tile after colliding with the prior decoding tile growth. This leads to placement of encoded
tile and growth of backing. This process repeats for all remaining direction ‘1’ tiles in the row.

At the end of this row, the backing tiles must grow in the +y direction again. For row 2,1339

the current backing gadget will not work as there exists a base tile hindering growth (which1340

is necessary for future signals to be sent). A modified, one-tile gadget is utilized for this1341

specific case. Additionally, once the row is complete after the placement of a direction change1342

tile, all remaining decoding tiles are dissolved into size 1 junk allow for growth of direction1343

‘0’ tiles of the following layer.1344

3.3.5 Row 2n + 1 Tile Placement1345

While growth of row 1 was in direction ‘0’, it is a special case due to the fact that it placed1346

tiles in voxels with the same coordinate in the y axis as the decoding tiles by a set of tiles1347

unique to the first row. For remaining odd-numbered rows, we must carry out a similar1348

DNA28



XX:48 Universal Shape Replication Via Self-Assembly With Signal-Passing Tiles

growth in the +y direction before as placing the encoded tile as demonstrated by the row1349

2 growth example, but incrementing x values. We note that the example figures in this1350

section do not directly correspond to the encoding provided in Figure 45, however these1351

are presented to provide the reader with examples of how this process would occur in an1352

encoding which does contain at least 3 rows. Decoding tiles of some odd valued row grow by1353

cooperatively binding with the decoding tile and previously placed directional tiles, as with1354

the row 1 tiles. However, upon binding with a shape or a fill tile they activate a glue in the1355

+y direction. This glue attempts to allow for growth of decoding tiles in the +y direction,1356

leading to the binding of a neighbor detection gadget and the placement of the encoded tile1357

(Figures 67, 68). Similarly to even numbered direction ‘1’ row growth, decoding tiles are1358

dissolved into size 1 junk to allow for reuse of voxels. In contrast, all but the bottom-most1359

decoding tile are removed, and glues are activated allowing remaining decoding tiles to sense1360

that a tile has already been placed in the current location (Figure 69). In the case when the1361

decoding tile activates its glue in the +y direction and binds to a tile, it continues growth in1362

the +x direction until finding an open location to grow (Figure 70).1363

Figure 67 As the direction ‘0’ tile (first tile of row 3) initiates growth, when a tile is cooperatively
placed on a base tile it immediately activates a glue in the +y direction. Since a path exists for tiles
to grow in that direction, they grow until no cooperative location is available.

Figure 68 At this point, a detector gadget (teal) binds and indicates that growth has reached
the point for the placement of the voxel encoded.

3.3.6 Slice Completion1364

Once the directional tiles reach the end of the encoding of the final row within the structure,1365

a slice completion gadget binds to the end of the encoding and the directional tile. At this1366

point, a message is returned through the current row of directional tiles which enabled growth1367

of the slice (Figure 71). Once the message is received by the first directional tile, it carries1368

out two operations - the first being unique to the first slice. In order for the growth of1369

the next slice, we must be able to guarantee the shape tiles in the slice are connected to1370

either the shape which has grown, or are connected to the newly growing slice. To guarantee1371

connection of all tiles of the first slice persist even after filler tile removal, we must create1372



A. Alseth, D. Hader, and M. J. Patitz XX:49

Figure 69 As signals are passed backwards through the tile growth, all horizontal tiles are
deactivated. This allows for the direction ‘0’ voxels to sense prior placed tile locations from the same
row. Note that tiles growing along the +y axis are retained initially.

Figure 70 As the tiles which encode the second tile of row 3 grow to their placement location,
upon first cooperative binding with the base they attempt to grow in the +y direction. The signal
‘bounces’, and the growth continues along the base. Since the second location has not been placed,
the +y direction of growth is free to take place.

DNA28



XX:50 Universal Shape Replication Via Self-Assembly With Signal-Passing Tiles

strength 2 connections between the encoding structure and all tiles of the first slice. This is1373

accomplished by extending the growth of the backing tiles, which allows for all tiles to be1374

connected via strength 2 to the encoding structure. The message is sent through the base1375

tile which initiated growth of the first slice, into the adjacent backing tiles. After backing1376

tiles receiving the message, strength 2 glues are activated on all the +y direction faces of1377

the currently placed backing tiles. Only the topmost layer of backing tiles will allow for1378

cooperative placement of the new backing tiles on top of the newly created slice. The newly1379

placed backing tiles opens up cooperative binding locations for the backing tiles to then bind1380

with the top row of the slice (Figure 72). This allows for the tiles in the topmost row of1381

the slice to activate glues for binding to their neighbor in the −y direction. Once bound to1382

the neighbor in the −y direction, the tiles are then able to activate glues which allow for1383

neighbor detection gadgets to bind, allowing for the growth of a new slice.1384

Figure 71 The slice completion gadget (green) binds to the outermost directional tile and decoding
tiles, signaling for dissolution of decoding tiles and extension of backing tiles

Figure 72 Backing tiles activate strength 2 glues, allowing for cooperative growth along the top
of the first slice

In addition to the growth of the backing tiles, a signal is sent to place a new directional1385

tile. This directional tile takes the information of the first row of directional tiles and1386

cooperatively binds with both 0 and 1 tiles on the encoding structure; its purpose is to1387

simply pass forward the directional information and allow for the tile placement process to1388

continue in the next slice. In addition to the directional tile exposing a directional glue, we1389

also expose a terminating glue (gt) which is used in the detection of the completion of the1390

final slice. Once the growth of the new directional tile occurs alongside the creation of the1391

top row of backing tiles, growth of the new slice can begin with starting conditions shown in1392

Figure 73.1393



A. Alseth, D. Hader, and M. J. Patitz XX:51

Figure 73 First directional tile of the second slice is ready to begin growth.

3.3.7 Detaching From Base1394

Slice growth proceeds via the previously described process until reaching the final slice. Once1395

the final slice is placed, a slice completion gadget binds allowing for the placement of a1396

directional tile, as per any other row. However, the exposed terminating glue allows for1397

the attachment of the decoder completion detector with the outermost edge of the encoding1398

structure (Figure 74). Upon binding of the decoder completion detector, a glue is activated1399

to allow for the growth of decoder completion tiles which cooperatively bind to the outermost1400

slice layer. Binding of the decoder completion tiles occurs such that only attachments between1401

shape tiles activate glues for cooperative growth, and filler tiles must form a strength 21402

duple with the decoder completion tiles. Once bound as a duple, the filler tiles send glue1403

deactivation signals to their remaining active glues.1404

Figure 74 At the completion of the final row, the decoder completion detector (black) is able to
bind with the outermost directional tile and cause growth of decoder completion tiles which remove
remaining fill tiles.

Once a decoder completion tile binds with the outermost backing tile above the top row1405

of a slice, it sends a dissolve message to all the base and backing tiles in the same yz plane1406

(Figure 75) to turn them into size 1 junk. The base tiles, upon receiving this dissolve message,1407

also initiate a message to dissolve the remaining tiles placed as part of the assembly sequence1408

into size 1 junk, including the initial binding tile t0. The initial binding tile then signals to1409

the encoding structure to dissolve into size 1 junk, and the only terminal assembly remaining1410

is the shape assembly produced by the decoding process.1411

DNA28



XX:52 Universal Shape Replication Via Self-Assembly With Signal-Passing Tiles

Figure 75 After the decoder completion tiles (green) bind to the final slice, this sends deactivation
signals to the fill tiles and bind to the backing tiles, a dissolve message is sent to the remaining tiles
involved in the decoding process.

3.3.8 Proof of Universal Shape Decoding Correctness1412

Here we briefly summarize the decoding process and show that during this process, the1413

shapes which were encoded in the set of input encoding assemblies Φ are correctly assembled.1414

We first consider the decoding process of a single encoding assembly ϕ ∈ Φ and note that a1415

similar process happens for all encoding assemblies simultaneously without interfering with1416

one another.1417

Our decoding process begins by building a base of tiles connected to ϕ. This base holds1418

the shape as it’s being constructed and is used to help ensure the connectivity of the shape1419

as it’s being constructed. The decoding process is performed in iterations, where during1420

each iteration a row of ϕ is scanned tile-by-tile and a corresponding 2D slice of the shape1421

is constructed. Each slice is constructed starting from the bottom (smallest y coordinate)1422

to the top (largest y coordinate), with tiles attaching in a zig-zag manner, as illustrated in1423

Figure 21. Each slice of the assembled shape corresponds to a unique z coordinate so for1424

convenience we call the slice whose z coordinate is i, σi. As each slice is assembled, tiles are1425

placed in each location of the slice, even those locations that will not be part of the final1426

shape, though these will be removed during the assembly of the next slice.1427

The first slice σ1 can be assembled naively, but during the assembly of each following1428

slice, tiles which will not be part of the final shape on the previous slice must be removed.1429

This is done as follows. Suppose that slice σi (i > 1) is currently being assembled. Before a1430

tile ti is placed in a location (x, y, i), a gadget is used to determine the type of the tile ti−1 at1431

location (x, y, i − 1) (i.e. the tile with the same x and y coordinates on the previous slice). If1432

this ti−1 is part of the final shape, then ti is placed and signals are used to activate strength1433

2 glues between ti and ti−1; otherwise, if ti−1 is not part of the final shape, it is removed1434

before ti is placed. Regardless of the type of tile ti−1, when ti is placed, glues are activated1435

which connect ti to all adjacent tiles on the same slice. Once the final slice is assembled, a1436

final zig-zag pass is made in the next z coordinate which removes all tiles from the last slice1437

which are not part of the final shape.1438

It is also important to note that the base, on which the shape is being assembled, also1439

forms a ceiling above the slices being assembled. This ceiling helps ensure that tiles on the1440

top row of each slice are able to remain attached to the assembly during construction. It1441

should be clear that during this decoding process (1) each tile that belongs to the final shape1442

is placed in its correct location, and (2) that those tiles of a slice which are not part of the1443



A. Alseth, D. Hader, and M. J. Patitz XX:53

final shape will be removed from the assembly during the assembly of the next slice. However,1444

because tiles are removed during the process, we must show that none of these removals can1445

cause parts of the assembly to unintentionally detach. We state this as Lemma 16.1446

▶ Lemma 16. Let ϕ be an encoding assembly which encodes the shape s. During the decoding1447

process above, as slice σi (i > 1) is being assembled, no tile in slices σ1, . . . , σi−1 which are1448

part of the final shape assembly can detach.1449

Proof. To prove this, we first note that all tiles in the slice σ1 which will be part of the1450

final shape assembly are bound to each neighboring tile in the slice, meaning that there1451

is no risk of detachment until tiles are removed in later slices. We use induction on the z1452

coordinate of the slices to show that this holds. Therefore, assume the hypothesis holds for1453

slices σ1, . . . , σk−1 and consider what happens as the slice σk assembles. Before the assembly1454

of σk, the only slice containing tiles that may need removal are in slice σk−1 since during the1455

assembly of a slice, all tiles which are not part of the final shape assembly are removed from1456

the previous slice.1457

As slice σk is being assembled, if all of the tiles in σk−1 are part of the final shape1458

assembly, then nothing will be detached and the proof is complete. Assume then that there1459

is some tile in slice σk−1 which is not part of the final shape assembly and thus needs to1460

be removed. Assembly of σk will continue until we reach such a tile, say t at coordinates1461

(xt, yt, zt = k − 1). Gadgets will detect that t needs to be removed before a tile, say t′, is1462

placed in coordinates (xt, yt, zt + 1 = k). When t is detected, σk will be assembled up to the1463

location of t′ meaning that there will be a tile in every location of σk below y coordinate yt1464

as well as all locations at y coordinate yt to either the left or right of t′ depending on the1465

parity of the y coordinate in the zig-zag growth procedure for σk.1466

To ensure that the detachment of t does not cause any other tiles to detach, we must1467

look at all neighbors of t in the assembly. 1 of these neighbors will be t′ itself and this tile1468

will be attached to all of its neighbors in σk so we don’t have to consider that one. If t has a1469

neighboring tile in slice σk−2, then notice that this tile must (1) be a tile belonging to the1470

final shape assembly since it was not removed during the assembly of slice σk−1, and (2)1471

have at least 1 other neighboring tile in σk−2 or σk−3 to which it is attached since otherwise1472

the shape being encoded would have disconnected parts which we don’t allow. Therefore,1473

the removal of t would not cause this tile to detach.1474

We now consider the 4 potential neighbors of t in the slice σk−1. For the neighbor below1475

t, say t−y, we again note that, because shape s cannot have any disconnected components,1476

t−y must have at least one neighbor other than t which is part of the final shape assembly.1477

Because the current slice σk has grown up to the y coordinate of t, any such neighbor of1478

t−y must already exist in the assembly is attached to t−y with strength 2. Therefore, the1479

removal of t will not cause t−y to detach.1480

Now consider the neighbors of t with the same y and z coordinates, call these t−x and1481

t+x. Notice that because slices are grown in a zig-zag manner, the growth of the current1482

slice σk will be such that one of these already has a neighboring tile in σk and one does1483

not. Without loss of generality, suppose that at the current row of slice σk attachments are1484

happening from the −x direction to the +x direction so that t−x already has a neighbor1485

in σk and t+x does not. Because any neighbor of t−x that exists must have been placed1486

by now, the detachment of t will not cause t−x to detach for the same reason as t−y. Now,1487

For t+x it may be the case its only neighbor that is part of the final shape assembly is in1488

slice σk and has not yet attached. Still notice that because σk has not yet finished growth,1489

no tiles have yet been removed from σk−1 with a y coordinate greater than ty. This means1490

that t+x still has neighboring tiles to which it is attached. This is even true if ty is at the1491

DNA28



XX:54 Universal Shape Replication Via Self-Assembly With Signal-Passing Tiles

top of the slice since the base contains a ceiling above the assembly to which the tiles are1492

attached. Therefore, even if t is removed, t+x will remain attached to the assembly. The1493

same argument applies to t+y, the neighbor above t.1494

By the assembly procedure up to this point, it is therefore safe to remove tile t, place t′
1495

and continue with the assembly of slice σk. Since this holds for any tile which needs to be1496

removed from slice σk−1, the assembly of σk will complete without any tiles that are part of1497

the final shape assembly detaching. ◀1498

From here, it’s clear that the assembly of the slices of the shape can complete without1499

erroneous detachment. Since all tiles that are part of the final shape assembly have been1500

added during the slice construction and since all tiles which are not part of the final shape1501

assembly have been removed from their respective slices, it’s clear that the decoding process1502

successfully assembles our final shape assembly.1503

Given the set of input encoding structures Φ = {ϕ1, . . . , ϕn}, the STAMR system DΦ =1504

{D, ΣΦ, τ = 2} produces a set of terminal supertiles S = {s1, . . . , sn} in parallel with a1505

maximum junk size of 3. DΦ finitely completes, as for the production of the set of shapes1506

s ∈ S from input encoding structures Φ a finite number of tiles are required for each encoding1507

structure to produces a terminal assembly. We can guarantee this as each encoding produce1508

a single terminal shape, as the encoding of the shape dissolves into size 1 junk after the1509

terminal shape has decoded. By our construction, there are never exposed glues on the1510

surfaces of any pair of assemblies that each contain an input encoding that would allow them1511

to bind to each other. Since junk assemblies produced by any assembly sequence are also1512

unable to negatively interact with other assemblies, a system whose input assemblies have1513

multiple shapes will behave simply as the union of individual systems which each have one1514

input assembly shape, creating terminal assemblies of all of (and only) the correct shapes.1515

This proves Lemma 15.1516

Now that we have shown the existence of universal encoding and universal decoding1517

tilesets, we have the basis to demonstrate a universal shape replicator. We generate a new1518

STAMR tileset R = E ∪ D and STAMR system RS = {R, ΣS , τ = 2}, where ΣS consists of1519

an infinite number of copies of each tile type from R and an infinite number of copies of each1520

uniformly covered assembly from the set S = {s1, . . . , sn}, whose shapes are any arbitrary1521

set of shapes.1522

Recall that during the encoding process, the encoding corner gadget is bound to the1523

encoding structure while it is being built. Once the entire encoding process finishes and1524

the corner gadget receives a ’dissolve’ signal, it first activates a glue to signal to the first1525

tile placed in the encoding structure that it should turn on the initiator glue which is the1526

glue initially bound to by the tiles of D. Thus, exactly when an encoding of some si, ϕi,1527

is completed by the tiles of E, decoding that ϕi will begin by the tiles of D, resulting in a1528

terminal assembly with the same shape as si. We make a slight modification to the tile of1529

the encoding structure that exposes the initiator glue, and the initial decoding tile which1530

attach to it, the initiator tile. We make two copies of the initiator tile, which we will call1531

t1 and t2. The first, t1, will bind to the initiator glue and cause the decoding process to1532

proceed exactly as before. However, when the original initiator tile would have detected1533

completion of the decoding process and sent a ‘dissolve’ signal to the first tile of the encoding1534

structure, t1 instead sends a signal that tells that tile to activate a glue that will allow t2 to1535

attach, and then t1 will detach. This will effectively cause the encoding to produce a decoded1536

structure and then have all of the ‘helper’ tiles dissolve, leaving the encoding structure able1537

to bind to t2 which then initiates the regular decoding process, and when it receives the1538

signal telling it that has completed, t2 does pass the ‘dissolve’ signal to the first tile of the1539



A. Alseth, D. Hader, and M. J. Patitz XX:55

encoding structure. In this way, each encoding structure causes two copies of the decoded1540

assembly to be produced, and then dissolves.1541

By our construction, the only glues required to be shared between the two tilesets are1542

the glues encoding 1 and 0 on the encoding structure, and the previously mentioned glues on1543

the encoded assembly which initiate the decoding process. The glues for 0/1 are shared by1544

multiple tiles in both E and D. All tiles in D which have the the 0/1 glue (or its complement)1545

are required to be placed by cooperation with a non 0/1 glue. Additionally, each tile in D has1546

at most one face which contains strength 1 0/1 glue. Since no other glues are shared between1547

E and D it is not possible for strength 2 binding to occur between (super)tiles in E and D1548

aside from the binding of ϕ with the initiator tiles of D. Since junk assemblies produced by1549

any assembly sequence are also unable to negatively interact with other assemblies, a system1550

whose input assemblies have multiple shapes will behave simply as the union of individual1551

systems which each have one input assembly shape, creating terminal assemblies of all of1552

(and only) the correct shapes.1553

The maximal junk size of R is 4, driven by the junk size of E. We can say that RS finitely1554

completes with respect to the set of assemblies created from the shape tiles of D in the shape1555

of each assembly in S, as the tileset R operates such that any input shape si is encoded1556

into an intermediate structure ϕi, ϕi is then decoded into two copies of s′
i, an assembly1557

which contains tiles in the exact same locations as s (up to rotation and translation). As1558

deconstruction leads to the production of a single structure ϕi, and ϕi is only able to be1559

decoded to s′
i two times, we can place a finite bound on the number of each tile type required1560

to produce each terminal assembly s′. (This largely follows from the fact that encoding1561

systems using E finitely complete with respect to the set of encoding assemblies, and that1562

decoding systems using D finitely complete with respect to the set of assemblies whose shapes1563

are encoded.) Therefore, R also finitely completes, with respect to the set of assemblies with1564

the same shape as the input assemblies, and Theorem 13 is proven.1565

Note that the condition that a single encoding structure ϕi leads to the production of1566

exactly two target assemblies s′
i is imposed to allow for the universal shape replicator to1567

technically be able to replicate shapes from an arbitrarily large set of input assembly shapes1568

without the potential to ‘starve’ the encodings of one shape so that they never produce1569

decoded copies (and thus the replicator would not finitely complete with respect to the full1570

set of terminal assembly shapes). If only one input assembly shape was provided as input, it1571

would instead be possible to just remove the dissolve signals from the encoding structure and1572

allow each to initiate the production of an unbounded number of decoded copies. It would1573

also be trivial to add tiles that make copies of the encoded structures that can each initiate1574

the decoding process, leading to exponential replication.1575

4 Universal Shape Encoding, Decoding, and Replication in the STAM1576

As previously mentioned, our use of the STAMR instead of the standard STAM for the1577

previous results was intended to allow for the input assemblies to be more generic. That1578

is, a single uniform glue can cover their entire surfaces rather than having glues that are1579

direction specific, which is implicitly the case with glues in the STAM (as well as the aTAM1580

and 2HAM, as commonly defined) since tiles are not allowed to rotate in those models and1581

therefore glues with complementary labels but in non-opposite directions can’t bind. Giving1582

tiles the ability to rotate, meaning that glues are not specific to directions, made aspects of1583

the shape encoding problem more difficult to solve, especially the “leader election” process1584

to select a corner of the bounding box to be the location of the origin. Nonetheless, the1585

DNA28



XX:56 Universal Shape Replication Via Self-Assembly With Signal-Passing Tiles

constructions can be easily modified to work in the STAM. To do this we can simply define1586

rotated versions of each of our tiles, one for each of the 24 possible rotations. The behavior1587

of these tiles will be identical to the behavior of the tiles in the STAMR which can easily be1588

seen by forming the trivial bijection between individual tiles in the STAM tileset and rotated1589

instances of those tiles in the STAMR tileset. This induces a bijection between assemblies1590

formed by the tiles in both, and this bijection clearly preserves the dynamics of the system1591

as any binding of assemblies possible in one corresponds to a binding of the corresponding1592

assemblies in the other. Thus we have an isomorphism between our systems defined on these1593

tilesets with the same input shape assemblies. Additionally, the leader election process is1594

essentially unnecessary in the STAM version with rotated tiles since we could just choose1595

say the top, northeastern most tile of the bounding box assembly as leader once the filler1596

verification has finished. In principle, despite the STAM tileset requiring many rotated copies1597

of the tiles necessary for the bounding box construction, we wouldn’t need rotated copies of1598

any other tiles if the same corner was always elected leader.1599

Also, it can be argued that the STAMR is in a sense more physically realizable than1600

the STAM if only for the fact that the STAM requires glues to implicitly encode their1601

orientations. When implementing tiles physically using DNA, where glues are often made1602

of single stranded DNA exposed on the sides of some more rigid DNA structure, several1603

copies of each glue (often one for each of the 6 directions) are needed. Because there are only1604

so many fixed length sequences of nucleotides, requiring that several sequences correspond1605

to the same glue is expensive. This is not only because those sequences can no longer be1606

used for different glues, but also because several similar sequences become unusable as glue1607

sequences must be sufficiently orthogonal to mitigate erroneous binding. Consequently, our1608

choice of a non-standard model of tile assembly does not weaken our results, but rather1609

strengthens them both theoretically and, to some extent, practically.1610

5 Beyond Shape Replication1611

The constructions used to prove Theorem 13 were intentionally broken into separate, modular1612

constructions proving Lemmas 14 and 15 and thus providing a universal shape encoder and1613

a universal shape decoder. This is not only useful for proving their correctness, but also for1614

allowing for computational transformations to be performed on the encodings of input shapes1615

in order to instead produce output shapes based on those transformations. Like even the1616

much simpler aTAM, the STAM (and STAMR) are Turing universal, meaning any arbitrary1617

computer program can be executed by systems in these models. Thus, given any program1618

that can perform a computational transformation of the points of a shape and output points1619

of another shape, tiles that execute that program (for instance, by simulating an arbitrary1620

Turing machine in standard ways, e.g. [25, 18]) can receive as input the binary encodings1621

of arbitrary shapes (after their creation by the universal encoder), transform them in any1622

algorithmic manner, and then assemblies of the shapes output by those transformations can1623

be produced (using the universal shape decoder).1624

Due to space constraints, we don’t go into great detail about the opportunities that such1625

constructions provide. Instead, we mention just a few of the possibilities (and depict some in1626

Figure 76) while noting that the possibilities are technically infinite:1627

1. Scaled shapes: a system could be designed to produce assemblies that have the shapes of1628

input assemblies scaled by either a built-in constant factor (including negative, to shrink1629

the shapes), or instead with another type of input assembly that specifies the scaling1630

factor, allowing for a “universal scaler”.1631



A. Alseth, D. Hader, and M. J. Patitz XX:57

(a) (b) (c)

Figure 76 (a) An example shape, (b) The same shape at scale factor 2, (c) A shape which is
complementary to the top surface of the shape in (a).

2. Inverse shapes: a system could be designed to produce assemblies that have the inverse, i.e.1632

complementary, shapes of the input assemblies (assuming the complements are connected,1633

and restricting to some bounding box size since the complement of any finite shape is1634

infinite).1635

3. Pattern matching: a system could be designed to inspect input assembly shapes for1636

specific patterns and to either produce assemblies that signal the presence of a target1637

pattern, or instead assemblies that are complementary to, and can bind to, the surfaces1638

of assemblies containing those patterns.1639

Although such constructions are highly theoretical and quite complex, and thus unlikely in1640

their current forms to be practically implementable, they provide a mathematical foundation1641

for the construction of complex, dynamic systems that mimic biological systems. One possible1642

example is an “artificial immune system” capable of inspecting surfaces, detecting those1643

which match (or fail to match) specific patterns, and creating assemblies capable of binding1644

to those deemed to be foreign, harmful, or otherwise targeted. As mentioned, there are1645

infinite possibilities.1646

6 Impossibility of Shape Replication Without Deconstruction1647

In this section, we prove that in order for a system in the STAMR to encode and/or replicate1648

shapes which have enclosed or bent cavities (see Definitions 4 and 5), the input assemblies1649

must have the potential for tiles to be removed. To do so, we first utilize a theorem from [2].1650

▶ Theorem 4 (from [2]). Let U be an STAM* tileset such that for an arbitrary 3D shape S,1651

the STAM* system T = (U, σS , τ) with dom σS = S, T is a shape self-replicator for S and1652

σS is non-porous. Then, for any r ∈ N, there exists a shape S such that T must remove at1653

least r tiles from the seed assembly σS.1654

Theorem 4 from [2] applies to the STAM*. However, the STAMR is simply a restricted1655

version of the STAM* which only allows tiles to be a single shape, that of a unit cube, and1656

which does not allow flexible glues. Since all assemblies in the STAMR are non-porous (i.e.1657

free tiles cannot pass through the tiles of an assembly or the gaps between bound tiles) and1658

the STAMR has more restrictive dynamics than the STAM*, the proof of this impossibility1659

result, which shows the impossibility of self-replicating assemblies with enclosed cavities1660

without removing tiles, suffices to prove the following corollary (stated using the terminology1661

DNA28



XX:58 Universal Shape Replication Via Self-Assembly With Signal-Passing Tiles

of this paper) as well.2 Note that this proof holds even if the input assemblies are not1662

uniformly covered.1663

▶ Corollary 17. There exist neither a universal shape encoder nor a universal shape replicator1664

in the STAMR for the class of shapes with enclosed cavities whose assemblies are not1665

deconstructable.1666

(a) (b)
(c) (d)

Figure 77 (a) and (b) Partial depictions of a pair of shapes which cannot be correctly en-
coded/replicated without a deconstructable input assembly. Each consists of a 5 × 5 × 4 cube with a
4-cube-long bent cavity. For each, the green, purple, blue, and yellow locations indicate the empty
locations that make the bent cavity. The rest of the 5 × 5 × 4 cube locations would be filled in with
red cubes (some have been omitted to make the cavity locations visible). (c) and (d) The shapes of
assemblies that could grow into the bent cavities.

Our next theorem deals with shapes having bent cavities.1667

▶ Theorem 18. There exist neither a universal shape encoder nor a universal shape replicator1668

in the STAMR for the class of shapes with bent cavities whose input assemblies are uniformly1669

covered but are not deconstructable.1670

We prove Theorem 18 by contradiction. Therefore, let fe be a shape encoding function1671

and assume E is a universal shape encoder with respect to fe, and let c be the constant1672

value which bounds the size of the junk assemblies. (Nearly identical arguments will hold1673

for a universal shape replicator.) Define the shapes s1 and s2 as shown in Figures 77a and1674

77b, i.e. each is a 5 × 5 × 4 cube with a bent cavity that goes into the cube to a depth of 3,1675

then turns one of two directions for each. Note importantly that the well is offset from the1676

center of the cube such that s1 and s2 are not rotationally equivalent. Since E is assumed1677

to be a universal shape encoder, there must exist two STAMR systems E1 = (E, σ1, τ) and1678

E2 = (E, σ2, τ), where σ1 consists of infinite copies of tiles from E and infinite copies of1679

uniformly covered assemblies in the shape of s1, and σ2 consists of infinite copies of tiles1680

from E and infinite copies of uniformly covered assemblies in the shape of s2.1681

E1 must produce terminal assemblies which encode shape s1 but must not produce1682

terminal assemblies which encode shape s2, since no assembly of shape s2 is included in its1683

input assemblies. Similarly, E2 must produce terminal assemblies which encode shape s2 but1684

not s1. Let α⃗ be an assembly sequence in E1 which results in a terminal assembly encoding1685

shape s1. We now show that every action of α⃗ must be valid, in the same ordering, in E2 but1686

using an input assembly of shape s2. This is because the exact same glues will be exposed1687

by the input assemblies of shapes s1 and s2 in the same relative locations with the slight1688

difference of relative rotations of the innermost locations of the bent cavities of each from1689

the adjacent cavity locations. Assuming that, in α⃗, tiles attach into all locations of the bent1690

2 The proof can be found in [2], and we omit duplicating it here due to space constraints.



A. Alseth, D. Hader, and M. J. Patitz XX:59

cavity (if only the location shown in yellow remains empty the same argument will hold, and1691

if both the locations shown in yellow and blue remain empty then there is absolutely no1692

difference in any aspect of the assembly sequence in E2 and the argument immediately holds),1693

this results only in the relative orientations of at most the bottom two tiles being turned 901694

degrees relative to the tile immediately above them (i.e. the tile in the purple location in1695

Figure 77). Since tiles in the STAMR are rotatable, with no distinction for directions, there1696

is no mechanism for tiles in the purple locations of assemblies shown in Figures 77c and 77d1697

from distinguishing from each other (via tile types, glues, or signals). Tiles of the same types1698

which bind into those locations in α⃗ must also be able to do so in the assembly sequence of1699

E2 using the exact same glues and firing the exact same signals (if any). Thus α⃗ must be a1700

valid assembly sequence in E2 as well. This means that an assembly encoding the shape of1701

s1 is also created as a terminal assembly in E2. Note that if the constant c is greater than1702

the size of the shapes s1 and s2 (i.e. 5 ∗ 5 ∗ 4 − 4 = 96), then we can simply increase their1703

dimensions until they are larger than c (but still contain the same bent cavities) and the1704

argument still holds and the incorrectly produced assemblies cannot be considered “junk”1705

assemblies. This is a contradiction that E is a universal shape encoder with respect to fe1706

and constant c. Since no assumptions were made about E other than it being a universal1707

shape encoder, no such E can exist. By slightly altering the argument for a universal shape1708

replicator R (instead of universal encoder E) and generating terminal assemblies of shapes1709

s1 and s2 (rather than assemblies encoding those shapes), the same argument holds to show1710

that no universal shape replicator exists, and thus Theorem 18 is proven.1711

References1712

1 Zachary Abel, Nadia Benbernou, Mirela Damian, Erik D. Demaine, Martin L. Demaine,1713

Robin Flatland, Scott D. Kominers, and Robert T. Schweller. Shape replication through1714

self-assembly and RNAse enzymes. In SODA 2010: Proceedings of the Twenty-first Annual1715

ACM-SIAM Symposium on Discrete Algorithms, pages 1045–1064, Austin, Texas, 2010. Society1716

for Industrial and Applied Mathematics.1717

2 Andrew Alseth, Daniel Hader, and Matthew J. Patitz. Self-replication via tile self-assembly.1718

Technical Report 2105.02914, Computing Research Repository, 2021. URL: https://arxiv.1719

org/abs/2105.02914.1720

3 Andrew Alseth, Daniel Hader, and Matthew J. Patitz. Self-Replication via Tile Self-1721

Assembly (Extended Abstract). In Matthew R. Lakin and Petr Šulc, editors, 27th In-1722

ternational Conference on DNA Computing and Molecular Programming (DNA 27), volume1723

205 of Leibniz International Proceedings in Informatics (LIPIcs), pages 3:1–3:22, Dag-1724

stuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. URL: https:1725

//drops.dagstuhl.de/opus/volltexte/2021/14670, doi:10.4230/LIPIcs.DNA.27.3.1726

4 Sarah Cannon, Erik D. Demaine, Martin L. Demaine, Sarah Eisenstat, Matthew J. Patitz,1727

Robert T. Schweller, Scott M. Summers, and Andrew Winslow. Two hands are better than1728

one (up to constant factors): Self-assembly in the 2HAM vs. aTAM. In Natacha Portier1729

and Thomas Wilke, editors, STACS, volume 20 of LIPIcs, pages 172–184. Schloss Dagstuhl -1730

Leibniz-Zentrum fuer Informatik, 2013.1731

5 Cameron Chalk, Erik D. Demaine, Martin L. Demaine, Eric Martinez, Robert Schweller, Luis1732

Vega, and Tim Wylie. Universal shape replicators via Self-Assembly with Attractive and1733

Repulsive Forces. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on1734

Discrete Algorithms, pages 225–238. Society for Industrial and Applied Mathematics, January1735

2017. doi:10.1137/1.9781611974782.15.1736

6 Qi Cheng, Gagan Aggarwal, Michael H. Goldwasser, Ming-Yang Kao, Robert T. Schweller,1737

and Pablo Moisset de Espanés. Complexities for generalized models of self-assembly. SIAM1738

Journal on Computing, 34:1493–1515, 2005.1739

DNA28

https://arxiv.org/abs/2105.02914
https://arxiv.org/abs/2105.02914
https://arxiv.org/abs/2105.02914
https://drops.dagstuhl.de/opus/volltexte/2021/14670
https://drops.dagstuhl.de/opus/volltexte/2021/14670
https://drops.dagstuhl.de/opus/volltexte/2021/14670
https://doi.org/10.4230/LIPIcs.DNA.27.3
https://doi.org/10.1137/1.9781611974782.15


XX:60 Universal Shape Replication Via Self-Assembly With Signal-Passing Tiles

7 Erik D. Demaine, Martin L. Demaine, Sándor P. Fekete, Mashhood Ishaque, Eynat Rafalin,1740

Robert T. Schweller, and Diane L. Souvaine. Staged self-assembly: nanomanufacture of1741

arbitrary shapes with O(1) glues. Natural Computing, 7(3):347–370, 2008.1742

8 Erik D. Demaine, Matthew J. Patitz, Trent A. Rogers, Robert T. Schweller, Scott M. Summers,1743

and Damien Woods. The two-handed assembly model is not intrinsically universal. In 40th1744

International Colloquium on Automata, Languages and Programming, ICALP 2013, Riga,1745

Latvia, July 8-12, 2013, Lecture Notes in Computer Science. Springer, 2013.1746

9 Erik D. Demaine, Matthew J. Patitz, Robert T. Schweller, and Scott M. Summers. Self-1747

Assembly of Arbitrary Shapes Using RNAse Enzymes: Meeting the Kolmogorov Bound1748

with Small Scale Factor (extended abstract). In Thomas Schwentick and Christoph1749

Dürr, editors, 28th International Symposium on Theoretical Aspects of Computer Science1750

(STACS 2011), volume 9 of Leibniz International Proceedings in Informatics (LIPIcs),1751

pages 201–212, Dagstuhl, Germany, 2011. Schloss Dagstuhl–Leibniz-Zentrum fuer Inform-1752

atik. URL: http://drops.dagstuhl.de/opus/volltexte/2011/3011, doi:http://dx.doi.1753

org/10.4230/LIPIcs.STACS.2011.201.1754

10 David Doty, Jack H. Lutz, Matthew J. Patitz, Robert T. Schweller, Scott M. Summers, and1755

Damien Woods. The tile assembly model is intrinsically universal. In Proceedings of the 53rd1756

Annual IEEE Symposium on Foundations of Computer Science, FOCS 2012, pages 302–310,1757

2012.1758

11 Constantine Glen Evans. Crystals that count! Physical principles and experimental investiga-1759

tions of DNA tile self-assembly. PhD thesis, California Institute of Technology, 2014.1760

12 Tyler Fochtman, Jacob Hendricks, Jennifer E. Padilla, Matthew J. Patitz, and Trent A. Rogers.1761

Signal transmission across tile assemblies: 3D static tiles simulate active self-assembly by 2D1762

signal-passing tiles. Natural Computing, 14(2):251–264, 2015.1763

13 Jacob Hendricks, Matthew J. Patitz, and Trent A. Rogers. Replication of arbitrary hole-1764

free shapes via self-assembly with signal-passing tiles. In Cristian S. Calude and Michael J.1765

Dinneen, editors, Unconventional Computation and Natural Computation - 14th International1766

Conference, UCNC 2015, Auckland, New Zealand, August 30 - September 3, 2015, Proceedings,1767

volume 9252 of Lecture Notes in Computer Science, pages 202–214. Springer, 2015. URL: http:1768

//dx.doi.org/10.1007/978-3-319-21819-9_15, doi:10.1007/978-3-319-21819-9\_15.1769

14 Jacob Hendricks, Matthew J. Patitz, and Trent A. Rogers. Universal simulation of directed1770

systems in the abstract tile assembly model requires undirectedness. In Proceedings of the 57th1771

Annual IEEE Symposium on Foundations of Computer Science (FOCS 2016), New Brunswick,1772

New Jersey, USA October 9-11, 2016, pages 800–809, 2016.1773

15 Nataša Jonoska and Daria Karpenko. Active tile self-assembly, Part 1: Universality at1774

temperature 1. International Journal of Foundations of Computer Science, 25(02):141–163,1775

2014. doi:10.1142/S0129054114500087.1776

16 Yonggang Ke, Luvena L Ong, William M Shih, and Peng Yin. Three-dimensional structures1777

self-assembled from DNA bricks. Science, 338(6111):1177–1183, 2012.1778

17 Alexandra Keenan, Robert T. Schweller, and Xingsi Zhong. Exponential replication of patterns1779

in the signal tile assembly model. In David Soloveichik and Bernard Yurke, editors, DNA,1780

volume 8141 of Lecture Notes in Computer Science, pages 118–132. Springer, 2013.1781

18 James I. Lathrop, Jack H. Lutz, Matthew J. Patitz, and Scott M. Summers. Computability1782

and complexity in self-assembly. Theory Comput. Syst., 48(3):617–647, 2011.1783

19 James I. Lathrop, Jack H. Lutz, and Scott M. Summers. Strict self-assembly of discrete1784

Sierpinski triangles. Theoretical Computer Science, 410:384–405, 2009.1785

20 Austin Luchsinger, Robert Schweller, and Tim Wylie. Self-assembly of shapes at constant scale1786

using repulsive forces. Natural Computing, Aug 2018. doi:10.1007/s11047-018-9707-9.1787

21 Austin Luchsinger, Robert T. Schweller, and Tim Wylie. Self-assembly of shapes at constant1788

scale using repulsive forces. In UCNC, volume 10240 of Lecture Notes in Computer Science,1789

pages 82–97. Springer, 2017.1790

http://drops.dagstuhl.de/opus/volltexte/2011/3011
https://doi.org/http://dx.doi.org/10.4230/LIPIcs.STACS.2011.201
https://doi.org/http://dx.doi.org/10.4230/LIPIcs.STACS.2011.201
https://doi.org/http://dx.doi.org/10.4230/LIPIcs.STACS.2011.201
http://dx.doi.org/10.1007/978-3-319-21819-9_15
http://dx.doi.org/10.1007/978-3-319-21819-9_15
http://dx.doi.org/10.1007/978-3-319-21819-9_15
https://doi.org/10.1007/978-3-319-21819-9_15
https://doi.org/10.1142/S0129054114500087
https://doi.org/10.1007/s11047-018-9707-9


A. Alseth, D. Hader, and M. J. Patitz XX:61

22 Pierre-Étienne Meunier, Damien Regnault, and Damien Woods. The program-size complexity1791

of self-assembled paths. In Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani,1792

Gautam Kamath, and Julia Chuzhoy, editors, Proccedings of the 52nd Annual ACM SIGACT1793

Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages1794

727–737. ACM, 2020. doi:10.1145/3357713.3384263.1795

23 Jennifer E. Padilla, Matthew J. Patitz, Robert T. Schweller, Nadrian C. Seeman, Scott M.1796

Summers, and Xingsi Zhong. Asynchronous signal passing for tile self-assembly: Fuel efficient1797

computation and efficient assembly of shapes. International Journal of Foundations of1798

Computer Science, 25(4):459–488, 2014.1799

24 Matthew J. Patitz, Robert T. Schweller, and Scott M. Summers. Exact shapes and Turing1800

universality at temperature 1 with a single negative glue. In Luca Cardelli and William M.1801

Shih, editors, DNA Computing and Molecular Programming - 17th International Conference,1802

DNA 17, Pasadena, CA, USA, September 19-23, 2011. Proceedings, volume 6937 of Lecture1803

Notes in Computer Science, pages 175–189. Springer, 2011.1804

25 Matthew J. Patitz and Scott M. Summers. Self-assembly of decidable sets. Natural Computing,1805

10(2):853–877, 2011.1806

26 Matthew J. Patitz and Scott M. Summers. Identifying shapes using self-assembly. Algorithmica,1807

64(3):481–510, 2012.1808

27 Paul W. K. Rothemund and Erik Winfree. The program-size complexity of self-assembled1809

squares (extended abstract). In STOC ’00: Proceedings of the thirty-second annual ACM1810

Symposium on Theory of Computing, pages 459–468, Portland, Oregon, United States, 2000.1811

ACM.1812

28 Rebecca Schulman, Bernard Yurke, and Erik Winfree. Robust self-replication of com-1813

binatorial information via crystal growth and scission. Proceedings of the National1814

Academy of Sciences, 109(17):6405–10, 2012. URL: http://www.biomedsearch.com/nih/1815

Robust-self-replication-combinatorial-information/22493232.html.1816

29 David Soloveichik and Erik Winfree. Complexity of self-assembled shapes. SIAM Journal on1817

Computing, 36(6):1544–1569, 2007.1818

30 Scott M. Summers. Reducing tile complexity for the self-assembly of scaled shapes through1819

temperature programming. Algorithmica, 63(1-2):117–136, June 2012. URL: http://dx.doi.1820

org/10.1007/s00453-011-9522-5, doi:10.1007/s00453-011-9522-5.1821

31 Erik Winfree. Algorithmic Self-Assembly of DNA. PhD thesis, California Institute of Technology,1822

June 1998.1823

32 Damien Woods, David Doty, Cameron Myhrvold, Joy Hui, Felix Zhou, Peng Yin, and Erik1824

Winfree. Diverse and robust molecular algorithms using reprogrammable DNA self-assembly.1825

Nature, 567:366–372, 2019.1826

DNA28

https://doi.org/10.1145/3357713.3384263
http://www.biomedsearch.com/nih/Robust-self-replication-combinatorial-information/22493232.html
http://www.biomedsearch.com/nih/Robust-self-replication-combinatorial-information/22493232.html
http://www.biomedsearch.com/nih/Robust-self-replication-combinatorial-information/22493232.html
http://dx.doi.org/10.1007/s00453-011-9522-5
http://dx.doi.org/10.1007/s00453-011-9522-5
http://dx.doi.org/10.1007/s00453-011-9522-5
https://doi.org/10.1007/s00453-011-9522-5

	1 Introduction
	2 Definitions
	2.1 Definition of the STAMR model
	2.2 STAMR Gadgets and Tools

	3 3D Shape Replication
	3.1 Forming a bounding box and electing a corner as ``leader''
	3.1.1 Bounding Box Assembly Construction
	3.1.2 Detecting Bounding Box Completion
	3.1.3 Dissolving Edge Tiles and Corner Gadgets
	3.1.4 Filler Verification
	3.1.5 Handling Thin Shapes
	3.1.6 Outer Shell Construction

	3.2 Shape encoding
	3.2.1 Creation of a deconstruction shell
	3.2.2 Encoding Assembly via Bounding Box Deconstruction

	3.3 Shape Decoding
	3.3.1 Fill and Shape Tile Attachment Details
	3.3.2 Base Creation
	3.3.3 Row 1 Tile Placement
	3.3.4 Row 2n Tile Placement
	3.3.5 Row 2n + 1 Tile Placement
	3.3.6 Slice Completion
	3.3.7 Detaching From Base
	3.3.8 Proof of Universal Shape Decoding Correctness


	4 Universal Shape Encoding, Decoding, and Replication in the STAM
	5 Beyond Shape Replication
	6 Impossibility of Shape Replication Without Deconstruction

